Computing guaranteed error bounds for problems in renewal theory

  • Hans-Jürgen Dobner
Part of the European Consortium for Mathematics in Industry book series (ECMI, volume 6)

Abstract

Equations of renewal type are linear Volterra integral equations having the special form
$$x\left( s \right) = g\left( s \right) + \int_0^s {k\left( {s - t} \right)x\left( t \right)} dt,0 \leqslant s \leqslant a,a \in \left( {0,\infty } \right),$$
(1)
where the kernel and inhomogeneity are continuous. We are searching solutions in the real Banach Space B = C[0,a] which has the usual maximum norm.

Keywords

Real Banach Space Floating Point Renewal Theory Inclusion Condition Floating Point Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alefeld, G.; Herzberger, J.: Introduction to interval computing. New York, Academic Press 1983. Google Scholar
  2. [2]
    Dobner, H.-J.: Contributions to Computational Analysis. Bull. Austral. Math. Soc. Vol. 41(1990),231–235.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Feldmann, U.; Schneider, B.: A General Approach to Multicompartment Analysis and Models for the Pharmacodynamics. Berlin, Heidelberg, New York. Lecture Notes in Biomathematics 11(1976),243–277. Google Scholar
  4. [4]
    Kaucher, E.; Miranker, W.L.: Self-Validating Numerics for Function Space Problems, Academic Press, New York 1984. MATHGoogle Scholar
  5. [5]
    Kießling, J.; Lowes, M.; Paulik, A.: Genaue Rechnerarithmetik, B.G. Teubner, Stuttgart 1988. MATHGoogle Scholar
  6. [6]
    Kulisch, U.: Grundlagen des Numerischen Rechnerns. Bibliographisches Institut, Mannheim 1976.Google Scholar
  7. [7]
    Linz, P.: Analytical and Numerical Methods for Volterra Equations. SIAM Studies in Applied Mathematics 7, Philadelphia 1985. MATHGoogle Scholar

Copyright information

© B.G. Teubner Stuttgart and Kluwer Academic Publishers 1991

Authors and Affiliations

  • Hans-Jürgen Dobner
    • 1
  1. 1.Mathematisches Institut IIUniversität KarlsruheKarlsruheGermany

Personalised recommendations