From Laplace to Supernova SN 1987A: Bayesian Inference in Astrophysics

  • T. J. Loredo
Part of the Fundamental Theories of Physics book series (FTPH, volume 39)

Abstract

The Bayesian approach to probability theory is presented as an alternative to the currently used long-run relative frequency approach, which does not offer clear, compelling criteria for the design of statistical methods. Bayesian probability theory offers unique and demonstrably optimal solutions to well-posed statistical problems, and is historically the original approach to statistics. The reasons for earlier rejection of Bayesian methods are discussed, and it is noted that the work of Cox, Jaynes, and others answers earlier objections, giving Bayesian inference a firm logical and mathematical foundation as the correct mathematical language for quantifying uncertainty. The Bayesian approaches to parameter estimation and model comparison are outlined and illustrated by application to a simple problem based on the gaussian distribution. As further illustrations of the Bayesian paradigm, Bayesian solutions to two interesting astrophysical problems are outlined: the measurement of weak signals in a strong background, and the analysis of the neutrinos detected from supernova SN 1987A. A brief bibliography of astrophysically interesting applications of Bayesian inference is provided.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abies, J.G. (1974) ‘Maximum Entropy Spectral Analysis’, Astron. Astrophys. Supp. 15, 383.Google Scholar
  2. Bayes, T. (1763) ‘An Essay Towards Solving a Problem in the Doctrine of Chances’, Phil. Trans. Roy. Soc. London 53, 370. Reprinted in Biometrika 45, 293, and in Press (1989).CrossRefGoogle Scholar
  3. Berger, J.O. (1984) ‘The Robust Bayesian Viewpoint’, in J.B. Kadane (ed.), Robustness of Bayesian Analyses, Elsevier Science Publishers, B.V., p. 63.Google Scholar
  4. Berger, J.O. (1985) Statistical Decision Theory and Bayesian Analysis, Springer-Verlag, New York.MATHGoogle Scholar
  5. Berger, J.O., and D. A. Berry (1988) ‘Statistical Analysis and the Illusion of Objectivity’, Amer. Scientist 76, 159.Google Scholar
  6. Berger, J.O., and R. Wolpert (1984) The Likelihood Principle, Institute of Mathematical Statistics, Hayward, CA.Google Scholar
  7. Bernardo, J.M. (1979) ‘Reference Posterior Distributions for Bayesian Inference’, J. Roy. Stat. Soc. B41, 113.MathSciNetGoogle Scholar
  8. Bernardo, J.M. (1980) ‘A Bayesian Analysis of Hypothesis Testing’, in J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith (eds.), Bayesian Statistics, University Press, Valencia, Spain, p. 605.Google Scholar
  9. Bevington, P.R. (1969) Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill Book Company, New York.Google Scholar
  10. Birnbaum, A. (1962) J. Amer. Statist. Assoc.‘On the Foundations of Statistical Inference’, 57, 269; and following discussion.MathSciNetMATHCrossRefGoogle Scholar
  11. Box, G.E.P., and G.C. Tiao (1973) Bayesian Inference in Statistical Analysis, Addison-Wesley Publishing Co., Reading, MA.MATHGoogle Scholar
  12. Bretthorst, G.L. (1988a) ‘Excerpts from Bayesian Spectrum Analysis and Parameter Estimation’, in G.J. Erickson and C.R. Smith (eds.), Maximum-Entropy and Bayesian Methods in Science and Engineering, Vol. 1, Kluwer Academic Publishers, Dordrecht, p. 75.Google Scholar
  13. Bretthorst, G.L. (1988b) Bayesian Spectrum Analysis and Parameter Estimation, Springer-Verlag, New York.MATHGoogle Scholar
  14. Bretthorst, G.L. (1989a) ‘Bayesian Model Selection: Examples Relevant to NMR’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrecht, p. 377.Google Scholar
  15. Bretthorst, G.L. (1989b) ‘Bayesian Analysis I: Parameter Estimation Using Quadrature NMR Models’, J. Magn. Reson., in press.Google Scholar
  16. Bretthorst, G.L. (1989c) ‘Bayesian Analysis II: Signal Detection and Model Selection’, J. Magn. Reson., in press.Google Scholar
  17. Bretthorst, G.L. (1989d) ‘Bayesian Analysis III: Applications to NMR Signal Detection, Model Selection and Parameter Estimation’, J. Magn. Reson., in press.Google Scholar
  18. Bretthorst, G.L. (1990) ‘An Introduction to Parameter Estimation Using Bayesian Probability Theory’, these proceedings.Google Scholar
  19. Bretthorst, G.L., and C.R. Smith (1989) ‘Bayesian Analysis of Signals from Closely-Spaced Objects’, in R.L. Caswell (ed.), Infrared Systems and Components III, Proc. SPIE 1050.Google Scholar
  20. Burrows, C., and J. Koornneef (1989) ‘The Application of Maximum Entropy Techniques to Chopped Astronomical Infrared Data’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrecht.Google Scholar
  21. Cherry, M.L., E.L. Chupp, P.P. Dunphy, D.J. Forrest, and J.M. Ryan (1980) ‘Statistical Evaluation of Gamma-Ray Line Observations’, Ap. J. 242, 1257.CrossRefGoogle Scholar
  22. Cox, R.T. (1946) ‘Probability, Frequency, and Reasonable Expectation’, Am. J. Phys. 14, 1.MATHCrossRefGoogle Scholar
  23. Cox, R.T. (1961) The Algebra of Probable Inference, Johns Hopkins Press, Baltimore.MATHGoogle Scholar
  24. Dawid, A.P. (1980) ‘A Bayesian Look at Nuisance Parameters’, in J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith (eds.), Bayesian Statistics, University Press, Valencia, Spain, p. 167.Google Scholar
  25. Eadie, W.T., D. Drijard, F.E. James, M. Roos, and B. Sadoulet (1971) Statistical Methods in Experimental Physics, North-Holland Publishing Company, Amsterdam.MATHGoogle Scholar
  26. Edwards, W., H. Lindman, and L.J. Savage (1963) ‘Bayesian Statistical Inference for Phychological Research’, Psych. Rev. 70, 193; reprinted in J.B. Kadane (ed.), Robustness of Bayesian Analyses, Elsevier Science Publishers, B.V., p. 1.CrossRefGoogle Scholar
  27. Efron, B. (1975) ‘Biased Versus Unbiased Estimation’, Adv. Math. 16, 259.MathSciNetMATHCrossRefGoogle Scholar
  28. Erickson, G.J., P.O. Neudorfer, and C.R. Smith (1989) ‘From Chirp to Chip, A Beginning’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrect, p. 505.Google Scholar
  29. Feigelson, E.D. (1989) ‘Statistics in Astronomy’, in S. Kotz and N.L. Johnson (eds.), Encyclopedia of Statistical Science, Vol. 9, in press.Google Scholar
  30. Fougere, P.F. (1988) ‘Maximum Entropy Calculations on a Discrete Probability Space’, in G.J. Erickson and C.R. Smith (eds.), Maximum-Entropy and Bayesian Methods in Science and Engineering, Vol. 1, Kluwer Academic Publishers, Dordrecht, p. 205.Google Scholar
  31. Fougere, P.F. (1989) ‘Maximum Entropy Calculations on a Discrete Probability Space: Predictions Confirmed’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrect, p. 303.Google Scholar
  32. Frieden, B.R. (1972) ‘Restoring with Maximum Likelihood and Maximum Entropy’, J. Opt. Soc. Am. 62, 511.CrossRefGoogle Scholar
  33. Frieden, B.R. (1972) ‘Image Enhancement and Restoration’, in T.S. Huang (ed.), Picture Processing and Digital Filtering, Springer-Verlag, New York, p. 177.Google Scholar
  34. Frieden, B.R., and D.C. Wells (1978) ‘Restoring with Maximum Entropy. III. Poisson Sources and Backgrounds’, J. Opt Soc. Am. 68, 93.CrossRefGoogle Scholar
  35. Good, I.J. (1980) ‘The Contributions of Jeffreys to Bayesian Statistics’, in A. Zellner (ed.), Bayesian Analysis in Econometrics and Statistics, North-Holland, Amsterdam, p. 21.Google Scholar
  36. Grandy, W.T. (1987) Foundations of Statistical Mechanics Vol. 1: Equilibrium Theory, D. Reidel Publishing Company, Dordrecht.MATHGoogle Scholar
  37. Gull, S.F. (1988) ‘Bayesian Inductive Inference and Maximum Entropy’, in G.J. Erickson and C.R. Smith (eds.), Maximum-Entropy and Bayesian Methods in Science and Engineering, Vol. 1, Kluwer Academic Publishers, Dordrecht, p. 53.Google Scholar
  38. Gull, S.F. (1989) ‘Developments in Maximum Entropy Data Analysis’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrecht, p. 53.Google Scholar
  39. Gull, S.F., and G.J. Daniell (1978) ‘Image Reconstruction from Incomplete and Noisy Data’, Nature 272, 686.CrossRefGoogle Scholar
  40. Hearn, D. (1969) ‘Consistent Analysis of Gamma-Ray Astronomy Experiments’, Nuc. Inst, and Meth. 70, 200.CrossRefGoogle Scholar
  41. Iverson, G.R. (1984)Bayesian Statistical Inference, Sage Publications, Beverly Hills, California.Google Scholar
  42. Jaynes, E.T. (1957a) ‘Information Theory and Statistical Mechanics’, Phys. Rev. 106, 620.*MathSciNetCrossRefGoogle Scholar
  43. Jaynes, E.T. (1957b) ‘How Does the Brain Do Plausible Reasoning?’, Stanford Univ. Microwave Laboratory Report No. 421, reprinted in G.J. Erickson and C.R. Smith (eds.), Maximum-Entropy and Bayesian Methods in Science and Engineering, Vol. 1 (1988), Kluwer Academic Publishers, Dordrect, p. 1.Google Scholar
  44. Jaynes, E.T. (1958) Probability Theory in Science and Engineering, Colloquium Lectures in Pure and Applied Science No. 4, Socony Mobil Oil Co. Field Research Laboratory, Dallas.Google Scholar
  45. Jaynes, E.T. (1963) ‘New Engineering Applications of Information Theory’, in J.L. Bogdanoff and F. Kozin (eds.), Proc. of the 1st Symp. on Engineering Applications of Random Function Theory and Probability, John Wiley and Sons, Inc., New York, p. 163.Google Scholar
  46. Jaynes, E.T. (1968) ‘Prior Probabilities’, IEEE Trans. SSC-4, 227.*Google Scholar
  47. Jaynes, E.T. (1973) ‘The Well-Posed Problem’, Found, of Phys. 3, 477.*MathSciNetCrossRefGoogle Scholar
  48. Jaynes, E.T. (1976) ‘Confidence Intervals vs. Bayesian Intervals’, in W.L. Harper and C.A. Hooker (eds.), Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science, D. Reidel Pub. Co., Dordrecht, p. 252.*Google Scholar
  49. Jaynes, E.T. (1978) ‘Where Do We Stand on Maximum Entropy’, in R.D. Levine and M. Tribus (eds.), The Maximum Entropy Formalism, MIT Press, Cambridge, p. 15.*Google Scholar
  50. Jaynes, E.T. (1980a) ‘Margin aliz at ion and Prior Probabilities’, in A. Zellner (ed.), Bayesian Analysis in Econometrics and Statistics, North-Holland, Amsterdam, p. 43.*Google Scholar
  51. Jaynes, E.T. (1980b) ‘Review of Inference, Method, and Decision (R.D. Rosenkrantz)’, J. Am. Stat. Assoc. 74, 740.CrossRefGoogle Scholar
  52. Jaynes, E.T. (1982) ‘On the Rationale of Maximum Entropy Methods’, Proc. IEEE 70, 939.CrossRefGoogle Scholar
  53. Jaynes, E.T. (1983) Papers on Probability, Statistics, and Statistical Physics (ed. R.D. Rosenkrantz), D. Reidel Pub. Co., Dordrecht.Google Scholar
  54. Jaynes, E.T. (1984a) ‘The Intuitive Inadequacy of Classical Statistics’, Epistemologia VII, 43.Google Scholar
  55. Jaynes, E.T. (1984b) ‘Prior Information and Ambiguity in Inverse Problems’, SIAM-AMS Proc. 14, 151.MathSciNetGoogle Scholar
  56. Jaynes, E.T. (1985a) ‘Some Random Observations’, Synthese 63, 115.MathSciNetCrossRefGoogle Scholar
  57. Jaynes, E.T. (1985b) ‘Where Do We Go From Here?’, in C.R. Smith and W.T. Grandy, Jr. (eds.), Maximum-Entropy and Bayesian Methods in Inverse Problems, D. Reidel Publishing Company, Dordrecht, p. 21.Google Scholar
  58. Jaynes, E.T. (1985c) ‘Highly Informative Priors’, in J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith (eds.), Bayesian Statistics 2, Elsevier Science Publishers, Amsterdam, p. 329.Google Scholar
  59. Jaynes, E.T. (1986a) ‘Bayesian Methods: General Background’, in J.H. Justice (ed.), Maximum-Entropy and Bayesian Methods in Applied Statistics, Cambridge University Press, Cambridge, p. 1.CrossRefGoogle Scholar
  60. Jaynes, E.T. (1986b) ‘Monkees, Kangaroos, and N’, in J.H. Justice (ed.), Maximum-Entropy and Bayesian Methods in Applied Statistics, Cambridge University Press, Cambridge, p. 26.CrossRefGoogle Scholar
  61. Jaynes, E.T. (1987) ‘Bayesian Spectrum and Chirp Analysis’, in C.R. Smith and G.J. Erickson (eds.), Maximum-Entropy and Bayesian Spectral Analysis and Estimation Problems, D. Reidel Publishing Company, Dordrecht, p. 1.Google Scholar
  62. Jaynes, E.T. (1988a) ‘The Relation of Bayesian and Maximum Entropy Methods’, in G.J. Erickson and C.R. Smith (eds.), Maximum-Entropy and Bayesian Methods in Science and Engineering, Vol.1, Kluwer Academic Publishers, Dordrecht, p. 25.Google Scholar
  63. Jaynes, E.T. (1988b) ‘Detection of Extra-Solar System Planets’, in G.J. Erickson and C.R. Smith (eds.), Maximum-Entropy and Bayesian Methods in Science and Engineering, Vol.1, Kluwer Academic Publishers, Dordrecht, p. 147.Google Scholar
  64. Jaynes, E.T. (1989a) ‘Clearing Up Mysteries — The Original Goal’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrecht.Google Scholar
  65. Jaynes, E.T. (1989b) ‘Probability in Quantum Theory’, in Proceedings of the Workshop on Complexity, Entropy, and the Physics of Information, in press.Google Scholar
  66. Jaynes, E.T. (1990a) ‘Probability Theory as Logic’, these proceedings.Google Scholar
  67. Jaynes, E.T. (1990b) Probability Theory — The Logic of Science, in preparation.Google Scholar
  68. Jeffreys, H. (1937) ‘On the Relation Between Direct and Inverse Methods in Statistics’, Proc. Roy. Soc. A160, 325.Google Scholar
  69. Jeffreys, H. (1939) Theory of Probability, Oxford University Press, Oxford (3d revised edition 1961).Google Scholar
  70. Kawai, N., E.E. Fenimore, J. Middleditch, R.G. Cruddace, G.G. Fritz, and W.A. Snyder (1988) ‘X-Ray Observations of the Galactic Center by Spartan 1’, Ap. J. 330, 130.CrossRefGoogle Scholar
  71. Kolb, E. W., A. J. Stebbins, and M. S. Turner (1987) ‘How Reliable are Neutrino Mass Measurements from SN 1987A?’, Phys. Rev. D35, 3598; D36, 3820.Google Scholar
  72. Lahav, O., and S.F. Gull (1989) ‘Distances to Clusters of Galaxies by Maximum Entropy Method’, M.N.R.A.S. 240, 753.Google Scholar
  73. Lampton, M., B. Margon, and S. Bowyer (1976) ‘Parameter Estimation in X-Ray Astronomy’, Ap. J. 208, 177.CrossRefGoogle Scholar
  74. Laplace, P.S. (1812) Theorie Analytique des Probabilités, Courcier, Paris.Google Scholar
  75. Laplace, P.S. (1951)Philosophical Essay on Probability, Dover Publications, New York (originally published as the introduction to Laplace [1812]).Google Scholar
  76. Lindley, D.V. (1958) ‘Fiducial Distributions and Bayes’ Theorem’, J. Roy. Stat. Soc. B20, 102.MathSciNetGoogle Scholar
  77. Lindley, D.V. (1965) Introduction to Probability and Statistics from a Bayesian Viewpoint (2 Vols.), Cambridge University Press, Cambridge.MATHCrossRefGoogle Scholar
  78. Lindley, D.V. (1972) Bayesian Statistics, A Review, Society for Industrial and Applied Mathematics, Philadelphia.Google Scholar
  79. Loredo, T.J. and D.Q. Lamb (1989) ‘Neutrinos from SN 1987A: Implications for Cooling of the Nascent Neutron Star and the Mass of the Electron Antineutrino’, in E. Fenyves (ed.), Proceedings of the Fourteenth Texas Symposium on Relativistic Astrophysics, An. N. Y. Acad. Sci. 571, 601.Google Scholar
  80. Loredo, T.J. and D.Q. Lamb (1990a) ‘Neutrinos from SN 1987A: Implications for Cooling of the Nascent Neutron Star’, submitted to Phys. Rev. D.Google Scholar
  81. Loredo, T.J. and D.Q. Lamb (1990b) ‘Neutrinos from SN 1987A: Implications for the Mass of the Electron Antineutrino’, submitted to Phys. Rev. D.Google Scholar
  82. Mardia, K.V. (1972) Statistics of Directional Data, Academic Press, London.MATHGoogle Scholar
  83. Marsh, T.R., and K. Home (1989) ‘Maximum Entropy Tomography of Accretion Discs from their Emission Lines’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrecht, p. 339.Google Scholar
  84. Martin, B.R. (1971) Statistics for Physicists, Academic Press, London.Google Scholar
  85. Mendenhall, W., R. L. Scheaffer, and D. D. Wackerly (1981) Mathematical Statistics with Applications, Duxbury Press, Boston.Google Scholar
  86. Narayan, R., and R. Nityanada (1986) ‘Maximum Entropy Image Restoration in Astronomy’, Ann. Rev. Astron. Astrophys., 24, 127.CrossRefGoogle Scholar
  87. Novick, M., and W. Hall (1965) ‘A Bayesian Indifference Procedure’, J. Am. Stat. Assoc. 60, 1104.MathSciNetMATHCrossRefGoogle Scholar
  88. O’Mongain, E. (1973) ‘Appplication of Statistics to Results in Gamma Ray Astronomy’, Nature 241, 376.CrossRefGoogle Scholar
  89. Press, S.J. (1989) Bayesian Statistics: Principles, Models, and Applications, John Wiley and Sons, New York.MATHGoogle Scholar
  90. Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling (1986) ‘Numerical Recipes’, Cambridge University Press, Cambridge.Google Scholar
  91. Renyi, A. (1972) Letters on Probability, Wayne State University Press, Detroit.Google Scholar
  92. Rosenkrantz, R.D. (1977) Inference, Method and Decision: Towards a Bayesian Philosophy of Science, D. Reidel Publishing Company, Dordrect.Google Scholar
  93. Runcorn, K. (1989) ‘Sir Harold Jeffreys (1891–1989)’, Nature 339, 102.CrossRefGoogle Scholar
  94. Shore, J.E., and R.W. Johnson (1980) ‘Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-Entropy’, IEEE Trans. Inf. Th. IT-26, 26; erratum in IT-29, 942.MathSciNetCrossRefGoogle Scholar
  95. Sibisi, S. (1990) ‘Quantified MAXENT: An NMR Application’, these proceedings.Google Scholar
  96. Skilling, J. (1986) ‘Theory of Maximum Entropy Image Reconstruction’, in J.H. Justice (ed.), Maximum Entropy and Bayesian Methods in Applied Statistics, Cambridge University Press, Cambridge, p. 156.CrossRefGoogle Scholar
  97. Skilling, J. (1989) ‘Classic Maximum Entropy’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrecht, p. 45.Google Scholar
  98. Skilling, J. (1990) ‘Quantified Maximum Entropy’, these proceedings.Google Scholar
  99. Skilling, J. and S.F. Gull (1985) ‘Algorithms and Applications’, in C.R. Smith and W.T. Grandy, Jr. (eds.), Maximum-Entropy and Bayesian Methods in Inverse Problems, D. Reidel Publishing Company, Dordrecht, p. 83.Google Scholar
  100. Smith, C.R., and G. Erickson (1989) ‘From Rationality and Consistency to Bayesian Probability’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrecht, p. 29.Google Scholar
  101. Smith, C.R., R. Inguva, and R.L. Morgan (1984) ‘Maximum-Entropy Inverses in Physics’, SIAM-AMS Proc. 14, 151.MathSciNetGoogle Scholar
  102. Tribus, M. (1962) ‘The Use of the Maximum Entropy Estimate in the Estimation of Reliability’, in R.E. Machol and P. Gray (eds.), Recent Developments in Information and Decision Processes, The Macmillan Company, New York, p. 102.Google Scholar
  103. Tribus, M. (1969) Rational Descriptions, Decisions and Designs, Pergamon Press, New York.Google Scholar
  104. Van Campenhout, J.M., and T.M. Cover (1981) ‘Maximum Entropy and Conditional Probability’, IEEE Trans. on Info. Theory IT-27, 483.CrossRefGoogle Scholar
  105. van der Klis, M. (1989) ‘Fourier Techniques in X-Ray Timing’, in H. Ögelman and E.P.J van den Heuvel (eds.), Timing Neutron Stars, Kluwer Academic Publishers, Dordrect, p. 27.Google Scholar
  106. Zellner, A. (1977) ‘Maximal Data Informative Prior Distributions’, in A. Aykac and C. Brumat (eds.), New Developments in the Application of Bayesian Methods, North-Holland Publishing Co., Amsterdam, p. 211;Google Scholar
  107. A. Zellner (1984) Basic Issues in Econometrics, University of Chicago Press, Chicago, p. 201.Google Scholar
  108. Zellner, A. (1971) An Introduction to Bayesian Inference in Econometrics, J. Wiley and Sons, New York.MATHGoogle Scholar
  109. Zellner, A. (1986) ‘Biased Predictors, Rationality, and the Evaluation of Forecasts’, Econ. Let 21, 45.MathSciNetCrossRefGoogle Scholar
  110. Zellner, A. (1988) ‘A Bayesian Era’, in J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith (eds.), Bayesian Statistics 3, Oxford University Press, Oxford, p. 509.Google Scholar
  111. Zellner, A., and A. Siow (1980) ‘Posterior Odds Ratios for Selected Regression Hypotheses’, in J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith (eds.), Bayesian Statistics, University Press, Valencia, Spain, p. 585.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • T. J. Loredo
    • 1
  1. 1.Dept. of Astronomy and AstrophysicsUniversity of ChicagoChicagoUSA

Personalised recommendations