Complications in the Balmer-Line Spectrum of TT Hydrae

  • Paul B. Etzel
Part of the NATO ASI Series book series (ASIC, volume 319)

Abstract

The Balmer lines of interacting binaries cannot be interpreted in the usual sense as diagnostics of stellar photospheres. In an Algol-type binary, the presence of circumstellar material can lead to inconsistent interpretations about the nature of the hotter stellar component. The system TT Hydrae has fairly well established stellar properties. Its Balmer—line spectrum illustrates complications from circumstellar material. Complications at Hα because of the cooler secondary are also evident. Failure to recognize this complication could result in misinterpretations about the circumstellar material.

Keywords

Accretion Disk Spectral Type Binary Star Secondary Component Balmer Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, C.W. (1973). Astrophysical Quantities, third edition, ( Athlone, London).Google Scholar
  2. Batten, A. H. (1988). Publ. Astron. Soc. Pac. 100, 160.ADSCrossRefGoogle Scholar
  3. BideIman, W.P. (1976). In Be and Shell Stars, edited by A. Slettebak, ( Reidel Publ., Dordrecht ), p. 457.Google Scholar
  4. Etzel, P.B. (1984). Bull. Amer. Astron. Soc. 16, 504.ADSGoogle Scholar
  5. Etzel, P.B. (1988). Astron. J. 95, 1204.ADSCrossRefGoogle Scholar
  6. Etzel, P.B. (1989a). “Spectrophotometry of Algol-Type Binaries” In Active Close Binaries, edited by C. Ibanoglu and I. Yavuz, (these proceedings).Google Scholar
  7. Etzel, P.B. (1989b). Publ. Astron. Soc. Pac. (in preparation).Google Scholar
  8. Groth, H.-G. (1961) Z. Astrophys. 51, 231.ADSGoogle Scholar
  9. Harmanec, P. (1982). In Be Stars, edited by M. Jaschek and H.-G. Groth, ( Reidel Publ., Dordrecht ), p. 279.Google Scholar
  10. Joy, A. H. (1942). Publ. Astron. Soc. Pac. 54, 35.ADSCrossRefGoogle Scholar
  11. Joy, A. H. (1988). Publ. Astron. Soc. Pac. 100, 157.ADSCrossRefGoogle Scholar
  12. Kaitchuck, R. H., and Honeycutt, R. K. (1982). Astrophys. J. 258, 224.ADSCrossRefGoogle Scholar
  13. Kaitchuck, R. H., and Honeycutt, R. K. and Schlegel, E. M. (1985). Publ. Astron. Soc. Pac. 97, 1178.ADSCrossRefGoogle Scholar
  14. Kurucz, R. L. (1979). Astrophys. J. Suppl. 40, 1.ADSCrossRefGoogle Scholar
  15. Lubow, S. H., and Shu, F. H. (1975). Astrophys. J. 198, 383.ADSCrossRefGoogle Scholar
  16. Naftilan, S. A. (1975). Publ. Astron. Soc. Pac. 87, 321.ADSCrossRefGoogle Scholar
  17. Peters, G. J. (1980). In Close Binary Stars: Observations and Interpretations, edited by M. J. Plavec, D. M. Popper, and R. K. Ulrich, ( Reidel Publ., Dordrecht ), p. 287.Google Scholar
  18. Peters, G. J. (1989). Space Science Reviews 50, 9.ADSCrossRefGoogle Scholar
  19. Peters, G. J., and Polidan, R. S. (1984). Astrophys. J. 283, 745.ADSCrossRefGoogle Scholar
  20. Plavec, M. J. (1976). In Be and Shell Stars, edited by A. Slettebak,Google Scholar
  21. Plavec, M. J. (1983). Astrophys. J. 275, 251.ADSCrossRefGoogle Scholar
  22. Plavec, M. J. (1988). Astron. J. 96, 755.ADSCrossRefGoogle Scholar
  23. Popper, D. M. (1980). Annu. Rev. Astron. Astrophys. 18, 115.ADSCrossRefGoogle Scholar
  24. Popper, D. M. (1982). Publ. Astron. Soc. Pac. 94, 945.MathSciNetADSCrossRefGoogle Scholar
  25. Popper, D. M. (1989). Astrophys. J. Suppl. (in press).Google Scholar
  26. Sahade, J., and Cesco, C. U. (1946). Astrophys. J. 139, 793.Google Scholar
  27. Wyse, A. B. (1934). Lick Obs. Bull. 17, 37.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Paul B. Etzel
    • 1
  1. 1.Department of AstronomySan Diego State UniversitySan DiegoUSA

Personalised recommendations