A Method for Homoclinic and Heteroclinic Continuation in Two and Three Dimensions

  • A. J. Rodríguez-Luis
  • E. Freire
  • E. Ponce
Part of the NATO ASI Series book series (ASIC, volume 313)

Abstract

A numerical method for the detection and continuation of homoclinic and heteroclinic orbits is developed for the case of biparametric dynamical systems in two and three dimensions. We formulate a continuation problem for which the regularity conditions are studied. The numerical method is applied to several systems, some of them well-known.

Keywords

Saddle Point Hopf Bifurcation Homoclinic Orbit Heteroclinic Orbit Exponential Dichotomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnéodo, A., Coullet, P., Spiegel, E., Tresser, C. (1985) ‘Asymptotic Chaos’, Physica 14D, 327–347.MathSciNetMATHGoogle Scholar
  2. 2.
    Beyn, W.-J. (1990) ‘The Numerical Computation of Global Bifurcations: Ho- moclinic and Heteroclinic Orbits’, in D. Roose (ed.), Continuation and Bifurcations: Numerical Techniques and Applications, Kluwer Academic Publishers, Dordrecht, (see this volume).Google Scholar
  3. 3.
    Coppel, W.A . (1978) Dichotomies in Stability Theory, Lecture Notes in Mathematics 629, Springer-Verlag, New York.Google Scholar
  4. 4.
    Fife, P.C . (1979) Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics 28, Springer-Verlag, New York.Google Scholar
  5. 5.
    Freire, E., Gamero, E., Ponce, E., Franquelo, L.G. (1989) ‘An Algorithm for Symbolic Computation of Center Manifolds’, in P. Gianni (ed.), Symbolic and Algebraic Computation, Lecture Notes in Computer Science, vol. 358, Springer- Verlag, New York, pp. 219–230.Google Scholar
  6. 6.
    Freire, E., Gamero, E., Ponce, E. (1990) ‘Symbolic Computation and Bifurcation Methods’ in D. Roose (ed.), Continuation and Bifurcations: Numerical Techniques and Applications, Kluwer Academic Publishers, Dordrecht, (see this volume).Google Scholar
  7. 7.
    Gaspard, P., Kapral, R., Nicolis, G. (1984) ‘Bifurcation Phenomena near Homoclinic Systems: a Two Parameter Analysis’, J. Stat. Phys., 35, 697–727.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Glendinning, P., Sparrow, C. (1984) ’Local and Global Behavior near Homoclinic Orbits’, J. Stat. Phys., 35, 645–696.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Gruendler, J . (1985) ‘The existence of Homoclinic Orbits and the Method of Melnikov for Systems in IRn’ SIAM J. Math. Anal., 16, 907–931.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Guckenheimer, J., Holmes, P.J. (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York.Google Scholar
  11. 11.
    Kuznetsov, Y.A. (1990) ‘Computation of Invariant Manifold Bifurcations’, in D. Roose (ed.), Continuation and Bifurcations: Numerical Techniques and Applications, Kluwer Academic Publishers, Dordrecht, (see this volume).Google Scholar
  12. 12.
    Palmer, K.J. (1984) ‘Exponential Dichotomies and Transversal Homoclinic Points’, J. Diff. Eqns., 55, pp. 225–256.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Rheinboldt, W.C., Burkardt, J.V. (1983) ‘A Locally Parametrized Continuation Process’, ACM Trans. Math. Software, 9, pp. 215–235.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Sparrow, C . (1982) The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Applied Mathematical Sciences 41, Springer-Verlag, New York.Google Scholar
  15. 15.
    Wiggins, S . (1988) Global Bifurcations and Chaos. Analytical Methods, Applied Mathematical Sciences 73, Springer-Verlag, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • A. J. Rodríguez-Luis
    • 1
  • E. Freire
    • 1
  • E. Ponce
    • 1
  1. 1.Department of Applied Mathematics (University of Sevilla)Escuela Técnica Superior de Ingenieros IndustrialesSevillaSpain

Personalised recommendations