On the Present Understanding of Schottky Contacts

  • Winfried Mönch
Part of the Perspectives in Condensed Matter Physics book series (PCMP, volume 4)

Abstract

In 1874 F. Braun observed that “bei einer großen Anzahl natürlicher und künstlicher Schwefelmetalle… der Widerstand derselben verschieden war mit Richtung, Intensität und Dauer des Stromes”. W. Schottky then, in 1938, explained the rectifying behaviour of such metal-semiconductor contacts by a depletion layer which is characterized by the “Austrittsarbeit der Überschuß- oder der Defektelektronen an der Grenze Metall-Halbleiter”. Mott and most probably also Schottky postulated that the barrier height, as it is called now, equals the difference of the work function of the metal and the electron affinity of the semiconductor. Experimentally, the barrier heights are not found to obey this simple rule. The deviations were first assigned to electronic interface states by Bardeen. Following a later proposal of Heine’s, the metal wave-functions tail into the virtual gap states of the semiconductor and by this determine the barrier height at the metal-semiconductor interface. This model very well describes all chemical trends observed with the barrier heights of metal-semiconductor contacts.

Keywords

Fermi Level Barrier Height Work Function Depletion Layer Schottky Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Braun, Pogg. Ann. 153, 556 (1874).Google Scholar
  2. 2.
    W. G. Adams and R. E. Day, Proc. Roy. Soc. 25, 113 (1876).CrossRefGoogle Scholar
  3. 3.
    F. Braun, Sitzungsber. Naturforsch. Gesell. (Leipzig), p. 49 (1876).Google Scholar
  4. 4.
    L. D. Grondahl, U.S. Patent 1640335 issued Jan. 1, 1925.Google Scholar
  5. 5.
    W. Schottky and W. Deutschmann, Phys. Z. 30, 839 (1929).Google Scholar
  6. 6.
    A. H. Wilson, Proc. Roy. Soc. A133, 458 (1936) and 134, 211 (1931).Google Scholar
  7. 7.
    O. Fritsch, Ann. Phys. 22, 375 (1935).CrossRefGoogle Scholar
  8. 8.
    W. Schottky, Naturwissenschaften 26, 843 (1938).CrossRefGoogle Scholar
  9. 9.
    N. F. Mott, Proc. Cambridge Philos. Soc. 34, 568 (1938).CrossRefGoogle Scholar
  10. 10.
    W. Schottky, Z. Phys. 113, 367 (1939).CrossRefGoogle Scholar
  11. 11.
    W. Schottky and E. Spenke, Wiss. Veröff. Siemens-Werke 18, 225 (1939).Google Scholar
  12. 12.
    E. Spenke and W. Schottky, Wiss. Veröff. Siemens-Werke 20, 40 (1940).Google Scholar
  13. 13.
    Schottky, Z. Phys. 118, 539 (1942).CrossRefGoogle Scholar
  14. 14.
    H. Schweikert, Verh. Phys. Ges. 3, 99 (1939).Google Scholar
  15. 15.
    W. Schottky, Phys. Z. 41, 570 (1940).Google Scholar
  16. 16.
    S. Poganski, Z. Physik 134, 469 (1953).Google Scholar
  17. 17.
    S. Poganski, Z. Elektrochem. 56, 193 (1952).Google Scholar
  18. 18.
    E. H. Rhoderick, Metal Semiconductor Contacts (Clarendon, Oxford 1980).Google Scholar
  19. 19.
    L. J. Brillson, Surf. Sci. Repts. 2, 123 (1982).CrossRefGoogle Scholar
  20. 20.
    B L. Sherma(ed.), Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Plenum, New York 1984).Google Scholar
  21. 21.
    W. Mönch, Surf. Sci. 21, 443 (1970).CrossRefGoogle Scholar
  22. 22.
    S. Kurtin, T. C. McGill, and C.A. Mead, Phys. Rev. Letters 22, 1433 (1970).CrossRefGoogle Scholar
  23. 23.
    W. Gordy and W. J. O. Thomas, Phys. Rev. 24, 439 (1956).Google Scholar
  24. 24.
    K. W. Frese, jr. J. Vac. Sci. Technol. 16, 1042 (1979).CrossRefGoogle Scholar
  25. 25.
    H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).CrossRefGoogle Scholar
  26. 26.
    M. Schlüter, Phys. Rev. B17, 5044 (1978).Google Scholar
  27. 27.
    J. Tersoff, Surf. Sci. 168, 275 (1986).CrossRefGoogle Scholar
  28. 28.
    Landolt-Börnstein; Numerical Data and Functional Relationships in Science and Tech¬nology, ed. by O. Madelung (Springer, Berlin 1982), Group 3, Vol. 17.Google Scholar
  29. 29.
    C. A. Mead, Solid-State Electron. 9, 1023 (1966).CrossRefGoogle Scholar
  30. 30.
    J. O. McCaldin, T. C. McGill, and C. A. Mead, J. Vac Sci. Technol. 13, 802 (1976).CrossRefGoogle Scholar
  31. 31.
    W. Mönch, phys. stat. sol. 40, 257 (1970).CrossRefGoogle Scholar
  32. 32.
    K. K. Chin, S. H. Pan, D. Mo, P. Mahowald, N. Newman, I. Lindau, and W. E. Spicer, Phys. Rev. B32, 918 (1985).Google Scholar
  33. 33.
    W. Mönch, in: Festkörperprobleme: Advances in Solid State Physics, ed. by P. Grosse (Vieweg, Braunschweig 1984), Vol. XXIV, p. 229.CrossRefGoogle Scholar
  34. 34.
    R. Ludeke, T.-C Chiang, and D. E Eastman, J. Vac. Sci. Technol. 21, 599 (1982).CrossRefGoogle Scholar
  35. 35.
    D. Bolmont, P. Chen, F. Proix, and C.A. Sebenne, J. Phys. C: Solid State Phys. 15, 3639 (1982).CrossRefGoogle Scholar
  36. 36.
    R. Z. Bachrach and R. S. Bauer, J. Vac. Sci. Technol. 16, 1149 (1979).CrossRefGoogle Scholar
  37. 37.
    W. Mönch, Solid State Commun. 58, 215 (1986).CrossRefGoogle Scholar
  38. 38.
    J. Bardeen, Phys. Rev. 71, 717 (1947) V. Heine, Phys. Rev. 138, A 1689 (1965).CrossRefGoogle Scholar
  39. 39.
    F. Yndurain, J. Phys. C: Solid State Phys. 4, 2849 (1971).CrossRefGoogle Scholar
  40. 40.
    H. Flietner, phys. stat. sol. (b) 54, 201 (1972).CrossRefGoogle Scholar
  41. 41.
    C. Tejedor, F. Flores, and E. Louis, J. Phys. C: Solid State Phys. 10, 2163 (1977).CrossRefGoogle Scholar
  42. 42.
    J. Tersoff, Phys. Rev. Letters 52, 465 (1984).CrossRefGoogle Scholar
  43. 43.
    A. J. Bennett and C. B. Duke, Phys. Rev. 162, 578 (1967).CrossRefGoogle Scholar
  44. 45.
    St. G. Louie and M. L. Cohen, Phys. Rev. B13, 2461 (1976).CrossRefGoogle Scholar
  45. 46.
    J. L Freeouf and J. M. Woodall, Appl. Phys. Lett. 39, 727 (1986).CrossRefGoogle Scholar
  46. 47.
    W.E. Spicer, P. W. Chye, P. R. Skeath, and I. Lindau, J. Vac. Sci. Technol. 16, 1422 (1979).CrossRefGoogle Scholar
  47. 48.
    H. H. Wieder, J. Vac. Sci. Technol. 15, 1498 (1978).CrossRefGoogle Scholar
  48. 49.
    R. H. Williams, R. R. Varma, and V. Montgomery, J. Vac. Sci. Technol. 16, 1418 (1979).CrossRefGoogle Scholar
  49. 50.
    W. Mönch, Surf. Sci. 132, 92 (1983).CrossRefGoogle Scholar
  50. 51.
    A. Zur, T. C. McGill, and D. L. Smith, Phys. Rev. B28, 2060 (1983).Google Scholar
  51. 52.
    C. B. Duke and C. Mailhiot, J. Vac. Sci. Technol. B3, 1170 (1985).Google Scholar
  52. 53.
    L. Ley, R.A. Pollak, S.P. Kowalczyk, R.McFeely, and A. Shirley, Phys. Rev. B8, 641 (1973).Google Scholar
  53. 54.
    E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980).CrossRefGoogle Scholar
  54. 55.
    N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York 1976), p. 369.Google Scholar
  55. N.B. Hanney and C P. Smith, J. Am. Chem. Soc. 68, 171 (1946).CrossRefGoogle Scholar
  56. 57.
    L. Pauling, The Nature of the Chemical Bond (Cornell University, Ithaca, N. Y., 1960).Google Scholar
  57. J. Topping, Proc. Roy. Soc. (London) A114, 67 (1927) [59] J. Tersoff Phys. Rev. B30, 4874 (1984).Google Scholar
  58. 60.
    A. M. Cowley and S. M. Sze, J. Appl. Phys. 36, 3212 (1965).CrossRefGoogle Scholar
  59. 61.
    J. Tersoff Phys. Rev. B32, 6968 (1985).Google Scholar
  60. 62.
    W. Ludwig, Festkorperphysik (Akadem. Verlagsges., Wiesbaden 1978), p. 282.Google Scholar
  61. 63.
    J. C. Phillips, Solid State Commun. 12, 861 (1973).CrossRefGoogle Scholar
  62. C. Tejedor andF. Flores, J. Phys. C: Solid State Phys. 11, L19 (1978).Google Scholar
  63. 65.
    W. Mönch, Proc. 13th Annual Conf. on the Phys. and Chem. of Semicond. Interfaces, Pasadena, CA (USA), 1986; J. Vac. Sci. Technol. B4, in print (1986).Google Scholar

Copyright information

© Editorial Jaca Book spa, Milano 1990

Authors and Affiliations

  • Winfried Mönch
    • 1
  1. 1.Laboratorium für FestkörperphysikUniversität DuisburgDuisburgGermany

Personalised recommendations