The Celestial Reference System in Relativistic Framework

  • Han Chun-Hao
  • Huang Tian-Yi
  • Xu Bang-Xin
Conference paper
Part of the International Astronomical Union / Union Astronomique Internationale book series (IAUS, volume 141)

Abstract

The concept of reference system, reference frame, coordinate system and celestial sphere in a relativistic framework are given. The problems on the choice of celestial coordinate systems and the definition of the light deflection are discussed. Our suggestions are listed in Sec. 5.

Keywords

Reference Frame Celestial Body Global Coordinate System Relativistic Framework Light Deflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, R.d’E. (1963), “General relativity in Euclidean terms”, Proc. R. Soc. Lond. A, 272, 60.ADSMATHCrossRefGoogle Scholar
  2. Brumberg, V.A. (1981), “Relativistic reduction of astronomical measurements and reference frames”, in E.M. Gaposchkin and B. Kolaczek (eds.) Reference Coordinate Systems for Earth Dynamics, D. Reidel Publishing Company, Dordrecht, pp. 283–294.CrossRefGoogle Scholar
  3. Brumberg, V.A. and Kopejkin, S.M. (1989), “Relativistic theory of celestial reference frames”, in J. Kovalevsky, I.I. Mueller and B. Kolaczek (eds.) Reference Frames in Astronomy and Geophysics, Kluwer Academic Publishers, Dordrecht.Google Scholar
  4. Eichhorn, H. (1984), “Inertial systems — definitions and realizations”, Celest. Mech. 34, 11–18.ADSCrossRefGoogle Scholar
  5. Epstein, R. and Shapiro, I.I. (1980) “Post-Post-Newtonian deflection of light by the Sun”, Phys. Rev. 22D, 2947.ADSGoogle Scholar
  6. Fischbach, E. and Freeman, B.S. (1980) “Second-order contribution to the gravitational deflection of light”, Phys. Rev. 22D, 2950.ADSGoogle Scholar
  7. Fujimoto, M.K., Aoki, S., Nakajima, K., Fukushima, T. and Matzuzaka, S. (1982) “General relativistic framework for the study of astronomical/geodestic reference coordinates”, Proc. Symp. No. 5 of IAG, pp 26–35.Google Scholar
  8. Fukushima, T., Fujimoto, M.K., Kinoshita, H. and Aoki, S. (1986) “Coordinate systems in the general relativistic framework”, in J. Kovalevsky and V.A. Brumberg (eds.) Relativity in Celestial Mechanics and Astrometry, D. Reidel Publishing Company, Dordrecht, pp. 145–168.Google Scholar
  9. Horn, R.A. and Johnson, C.R. (1985) Matrix Analysis, Cambridge University Press.Google Scholar
  10. Kaplan, G.H. (ed.) (1981) “The IAU Resolutions on Astronomical Constants, Time Scales and the Fundamental Reference Frame“, U.S. Naval Observatory Circular No. 163.Google Scholar
  11. Kovalevsky, J. and Mueller, I.I. (1981) “Comments on conventional terrestrial and quasi-inertial reference systems”, in E.M. Gaposchkin and B. Kolaczek (eds.) Reference Coordinate System for Earth Dynamics, D. Reidel Publishing Company, Dordrecht, pp 375–384.Google Scholar
  12. Kovalevsky, J. (1989) “Stellar reference frames”, in J. Kovalevsky, I.I. Mueller and B. Kolaczek (eds.) Reference Frames in Astronomy and Geophysics, Kluwer Academic Publishers, Dordrecht.Google Scholar
  13. Kovalevsky, J., Mueller, I.I. and Kolaczek (eds.) (1989) Reference Frames in Astronomy and Geophysics, Kluwer Academic Publishers, Dordrecht.Google Scholar
  14. Møller, C. (1972) The Theory of Relativity, 2nd ed., Clarendon Press, Oxford.Google Scholar
  15. Moritz, H. (1981) “Relativistic effects in reference frames” in E.M. Gaposchkin and B. Kolaczek (eds.) Reference Coordinate System for Earth Dynamics, D. Reidel Publishing Company, Dordrecht, pp. 43–58.Google Scholar
  16. Murray, C.A. (1981) “Relativistic Astrometry”, Monthly Notices Roy. Astron. Soc, 195, 639–648.ADSGoogle Scholar
  17. Murray, C.A. (1983) Vectorial Astrometry, Adam Hilger Ltd. Bristol.Google Scholar
  18. Murray, C.A. (1986) “Relativity in astrometry” in J. Kovalevsky and V.A. Brumberg (eds.) Relativity in Celestial Mechanics and Astrometry, D. Reidel Publishing Company, Dordrecht, pp. 169–175.Google Scholar
  19. Richter, G. W. and Matzner, R.A. (1982) “Second-order contributions to gravitational deflection of light in the parameterized post-Newtonian formalism”, Phys. Rev. 26D, 1219.ADSGoogle Scholar
  20. Sachs R.K., Wu, H. (1977) General Relativity for Mathematicians, Springer-Verlag, Heidelberg.MATHCrossRefGoogle Scholar
  21. Soffel, M.H. (1989) Relativity in Astronometry, Celestial Mechanics and Geodesy, Springer-Verlag, Heidelberg.Google Scholar
  22. Standish Jr., E.M. (1982) “Conversion of positions and proper motions from B 1950.0 to the IAU system at 12000.0”, Astron. Astrophys. 115, 20–22.ADSGoogle Scholar
  23. Will, C.M. (1981) Theory and Experiment in Gravitational Physics, Cambridge University Press.Google Scholar
  24. Xu, C.-M., Xu, J.-J., Yang, L.-T. and Huang, Z.-H. (1984) “The PPN light deflection in any region“, Fudan Journal (Natural Science) 23, 228. (in Chinese).Google Scholar

Copyright information

© IAU 1990

Authors and Affiliations

  • Han Chun-Hao
    • 1
  • Huang Tian-Yi
    • 1
  • Xu Bang-Xin
    • 1
  1. 1.Department of AstronomyNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations