Collapse and Fragmentation of Molecular Clouds

  • M. Kiguchi
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 162)

Abstract

When the geometry of a cloud configuration is not spherical, long range property of gravity induces varies unexpected behavior. In many cases, therefore, simple consideration leads us to a wrong result on the problems of star formation. To obtain detailed feature of gravity in star formation, we studied numerically the behavior of gravity for rotating isothermal clouds. We constructed equilibrium models extensively, and studied the evolution of non-axisymmetric perturbation.

Keywords

Angular Momentum Star Formation Gravitational Torque Line Mass Angular Momentum Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hachisu, I. and Eriguchi, Y. (1985), ‘Equilibrium structures of rotating isothermal gas clouds. I’, Astron. & Astrophys. 143, 355.ADSGoogle Scholar
  2. Hachisu, I. and Eriguchi, Y. (1985), ‘Equilibrium structures of rotating isothermal gas clouds. II. Dependence on the angular momentum distribution’, Astron. & Astrophys. 147, 13.ADSGoogle Scholar
  3. Hayashi, C. (1981), ‘Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula’, Prog. Theor. Phys. Suppl. 70, 35.ADSCrossRefGoogle Scholar
  4. Hayashi, C., Narita, S. and Miyama, S, M. (1982), ‘Analytic solutions for equilibrium of rotating isothermal clouds. One-parameter family of axisymmetric and conformal configurations’, Prog. Theor. Phys. 68, 1949.ADSCrossRefGoogle Scholar
  5. Kiguchi, M., Narita, S., Miyama, S.M. and Hayashi, C. (1987), ‘The equilibria of rotating isothermal clouds’, Astrophys. J. 317, 830.ADSCrossRefGoogle Scholar
  6. Larson, R.B. (1985), ‘Cloud fragmentation and stellar masses’, Mon. Not. R. astr. Soc. 214, 379.ADSGoogle Scholar
  7. Miyama, S.M., Narita, S., Kiguchi, M. and Hayashi, C. (1989), ‘Non-axisymmetric instability of rotating isothermal equilibria’, submitted to Astrophys. J..Google Scholar
  8. Narita, S., Kiguchi, M., Miyama, S.M. and Hayashi, C. (1989), ‘Rotation-dominant equilibria of isothermal clouds’, submitted to Mon. Not. R. astr. Soc..Google Scholar
  9. Stahler, S.W. (1983), ‘The equilibria of rotating, isothermal clouds. I. Method of solution’, Astrophys. J. 268, 155.ADSCrossRefGoogle Scholar
  10. Stahler, S.W. (1983), ‘The equilibria of rotating, isothermal clouds. II. Structure and dynamical stability’, Astrophys. J. 268, 165.ADSCrossRefGoogle Scholar
  11. Tohline, J.E. (1985), ‘Star formation: phase transition, not Jeans instability’, Astrophys. J. 292, 181.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • M. Kiguchi
    • 1
  1. 1.Research Institute for Science and TechnologyKinki UniversityHigashi-Osaka-city, OsakaJapan

Personalised recommendations