Saline Lakes pp 165-172 | Cite as

The photosynthesis of Dunaliella parva Lerche as a function of temperature, light and salinity

  • C. Jiménez
  • F. X. Niell
  • J. A. Fernández
Part of the Developments in Hydrobiology book series (DIHY, volume 59)


The photosynthetic behaviour of Dunaliella parva Lerche from the athalassic lagoon of Fuente de Piedra (Malaga, Southern Spain) was studied experimentally at three NaCl concentrations (1, 2 and 3 M), five temperatures (15, 23, 31, 38 and 42 °C) and nine different irradiances between 82 and 891 mol m-2 s-l. Results are analyzed to define the best growing conditions for the algae.

D. parva shows the highest photosynthetic rates at a NaCl molarity of 2 M, under a moderate light intensity (600 mol m-2 s-1) at 31 °C. Above this light intensity a clear photoinhibition of the photosynthesis was found at 2 M and 3 M of NaCl. D. parva is a halotolerant and a thermoresistant species as evidenced by its net photosynthesis rate and positive values of oxygen evolution at 42 °C.

Two methods for modelling photosynthesis vs. irradiance curves are discussed. The first is a single model, based on third-order polynomial equations, and the second is double model, based on hyperbolical Michaelis-Menten type functions and negative exponential to define photoinhibition.


Dunaliella parva net photosynthesis light temperature salinity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizawa, K., Y. Nakamura & S. Miyachi, 1985. Variation of phosphoenolpyruvate carboxylase activity in Dunaliella associated with changes in atmospheric CO2 concentration. PL Cell Physiol. 26: 1199–1203.Google Scholar
  2. Ben-Amotz, A. & M. Avron, 1983. On the factors which determine massive ß-carotene accumulation in the halo-tolerant alga Dunaliella bardawil. PL Physiol. 72: 593–597.CrossRefGoogle Scholar
  3. Borowitzka, L. J., T. P. Moulton & M. A. Borowitzka, 1985. Salinity and the commercial production of betacarotene from Dunaliella salina. In: W. J. Barclay & R. Mcintosh (eds.), Algal biomass: an interdisciplinary perspective. J. Cramer Verlag, Verduz: 217–222.Google Scholar
  4. Borowitzka, M. A. & L. J. Borowitzka, 1988. Dunaliella. In: Microalgal biotechnology. Eds. M. A. Borowitzka & L. J. Borowitzka. Cambridge University Press. 477 pp.Google Scholar
  5. Brock, T. D., 1975. Salinity and the ecology of Dunaliella from Great Salt Lake. J. gen. Microbiol. 89: 285–292.Google Scholar
  6. Bruff, 1968. Effects of salt on the halophilic alga Dunaliella viridis. J. Bact. 95: 1461–1468.PubMedGoogle Scholar
  7. Gimmler, H., E. M. Kuhnl & G. Carl, 1978. Salinity dependent resistance of Dunaliella parva against extreme temperatures. I. Salinity and thermoresistance. Z. Pflanzenphysiol. 90: 133–153.Google Scholar
  8. Gimmler, H., C. Weidemann & E. M. Moller, 1981. The metabolic response of the halotolerant alga Dunaliella parva to hypertonic shocks. Ber. Deutsch. Bot. Ges. Bd. 94: 613–634.Google Scholar
  9. Ginzburg, B. Z. & M. Ginzburg, 1985. Studies of the comparative physiology of the genus Dunaliella (Chlorophyta, Volvocales). 1. Response of growth to NaCl concentration. Br. phycol. J. 20: 277–283.CrossRefGoogle Scholar
  10. Guillard, R. R. L., 1973. Division rates. In: Janet R. Stein (ed.), Handbook of phycological methods. Culture methods and growth measurements. Cambridge University Press: 289–311.Google Scholar
  11. Jassby, A. D. & T. Platt, 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540–547.CrossRefGoogle Scholar
  12. Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz 167: 191–194.Google Scholar
  13. Johnson, M. K., E. J. Johnson, R. D. MacElroy, H. L. Speer & B. S. Bruff, 1968. Effects of salts on the halophilic alga Dunaliella viridis. J. Bacteriol. 95: 1461–1468.PubMedGoogle Scholar
  14. Loeblich, L. A., 1969. Aplanospores of Dunaliella salina (Chlorophyta). J. Protozool. 16: 22–23.Google Scholar
  15. Loeblich, L. A., 1970. Growth limitation of Dunaliella salina by CO2 at high salinity. J. Phycol. 6: (suppl) 9.Google Scholar
  16. Loeblich, L. A., 1972. Studies on the brine flagellate Dunaliella salina. Ph.D. thesis, University of California, San Diego.Google Scholar
  17. Loeblich, L. A., 1974. Action spectra and effect of light intensity on growth, pigments and photosynthesis in Dunaliella salina. J. Protozool. 21: 420.Google Scholar
  18. Loeblich, L. A., 1982. Photosynthesis and pigments influenced by light intensity and salinity in the halophile Dunaliella salina (Chlorophyta). J. mar. biol. Ass. U.K. 62: 493–508.CrossRefGoogle Scholar
  19. Myronyuk, V. I. & L. O. Einor, 1968. Oxygen exchange and pigment content in various forms of Dunaliella salina Teod. under conditions of increasing NaCl content. Gidrobiologichnii Zhurnal 4: 23–29.Google Scholar
  20. Neale, P. J. & P. J. Richerson, 1987. Photoinhibition and the diurnal variation of phytoplankton photosynthesis. I. Development of a photosynthesis-irradiance model from studies of in situ responses. J. Plankton. Res. 9: 167–193.CrossRefGoogle Scholar
  21. Peterson, D. H., M. J. Perry, K. E. Bencala & M. C. Talbot, 1987. Phytoplankton productivity in relation to light intensity: a simple equation. Estuar. coast. & shelf Sci. 24: 813–832.CrossRefGoogle Scholar
  22. Platt, T. & A. D. Jassby, 1976. The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. J. Phycol. 12: 421–430.Google Scholar
  23. Platt, T., C. L. Gallegos & W. G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. mar. Res. 38: 687–701.Google Scholar
  24. Post, F. J., L. J. Borowitzka, M. A. Borowitzka, B. Mackay & T. Moulton, 1983. The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105: 95–113.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • C. Jiménez
    • 1
  • F. X. Niell
    • 1
  • J. A. Fernández
    • 2
  1. 1.Departamento de Ecología, Facultad de CienciasUniversidad de MálagaMálagaSpain
  2. 2.Departamento de Fisiología Vegetal, Facultad de CienciasUniversidad de MálagaMálagaSpain

Personalised recommendations