Defects and Disorder of Non-Linear Waves in Convection

  • R. Ribotta
  • A. Joets
Part of the NATO ASI Series book series (ASIC, volume 310)

Abstract

The traveling-wave convection of an anisotropic fluid (a nematic liquid crystal) constitutes a novel model of nonlinear waves. We show experimentally that instabilities of the phase arise in form of localized states inducing shocks, which in turn trigger the nucleation of defects. The conditions for the nucleation, the topology and the role of these defects in the progressive disorganization of the basic wavetrain are studied. The main results can be satisfactorily simulated by using an evolution equation of the complex Newell-Landau-Ginzburg type.

Keywords

Nematic Liquid Crystal Topological Defect Progressive Wave Convective Roll Anisotropic Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Newell, A.C. and Whitehead, J.A.(1969) “Finite bandwidth, finite amplitude equation”, J. Fluid. Mech., 38, 279.ADSMATHCrossRefGoogle Scholar
  2. Segel, L.A. (1969) “ Distant side-walls cause slow amplitude modulation of cellular convection”, J. Fluid Mech., 38, 203.ADSMATHCrossRefGoogle Scholar
  3. Newell, A.C. (1974) “Envelope equations”, Lect. Appl. Math. 15, 157.MathSciNetGoogle Scholar
  4. [2]
    Kogelman, S. and DiPrima, R.C. (1970) “Stability of spatially periodic supercritical flows in hydrodynamics”, Phys. Fluids 13, 1.MathSciNetADSMATHCrossRefGoogle Scholar
  5. [3]
    Blennerhassett, P.J. (1980) “On the generation of waves by wind”, Phil. Trans. Roy. Soc. Lond. A298, 451.MathSciNetADSGoogle Scholar
  6. [4]
    Stewartson, K., and Stuart, J.T. (1971) “Non-linear instability of plane Poiseuille flow”, J. Fluid Mech. 48, 529.MathSciNetADSMATHCrossRefGoogle Scholar
  7. [5]
    Moon, H. T., Huerre, P., Redekopp, L. G. (1983) “Transitions to chaos in the Ginzburg-Landau equation”, Physica 7D, 135.MathSciNetADSGoogle Scholar
  8. [6]
    Nozaki, K. and Bekki, N. (1983) “Pattern selection and spatiotemporal transition to chaos in the Ginzourg—Landau equation”, Phys. Rev. Lett. 51, 2171;MathSciNetADSCrossRefGoogle Scholar
  9. Nozaki, K. and Bekki, N (1984) “Exact solutions of the generalized Ginzburg-Landau equation”, J. Phys. Soc. Jap. 53, 1581.MathSciNetADSCrossRefGoogle Scholar
  10. [7]
    Sirovich, L., and Newton, P.K. (1986) "Periodic solutions of the Ginzburg-Landau equation, Physica 21D, 115.MathSciNetADSGoogle Scholar
  11. [8]
    Keefe, L.R. (1985) "Dynamics of perturbed wavetrain solutions to the Ginzburg-Landau equation, Stud in Appl. Math. 73, 91MathSciNetADSMATHGoogle Scholar
  12. Keefe, L.R. (1986) "Integrability and structural stability of solutions to the Ginzburg-Landau equation, Phys. Fluids 29, 3135.MathSciNetADSMATHCrossRefGoogle Scholar
  13. [9]
    Ghidaglia, J.M., and Héron, B. (1987) “Dimension of the attractors associated to the Ginzburg-Landau partial differential equation”, Physica 28D, 282.ADSGoogle Scholar
  14. [10]
    Bekki, N. and Nozaki, K. (1985) “Formations of spatial patterns and holes in the generalized Ginzburg-Landau equation”, Phys. Lett. A110, 133.ADSGoogle Scholar
  15. [11]
    Kawasaki, K. and Ohta, T. (1982) “Kink dynamics in one dimensional nonlinear systems”, Physica 116A, 573.Google Scholar
  16. [12]
    Coullet, P., Elphick, C., Gil, L. and Lega, J. (1987) “Topological defects of wave patterns”, Phys. Rev. Lett. 59, 884;ADSCrossRefGoogle Scholar
  17. Coullet, P. and Lega, J.(1988) “Defect-mediated turbulence in wave patterns”, Europhys. Lett. 7, 511.ADSCrossRefGoogle Scholar
  18. [13]
    Joets, A. and Ribotta, R. (1989) " Defects and transition to disorder in space-time patterns of nonlinear waves, in P. Coullet and P. Huerre (eds.), New trends in nonlinear dynamics and pattern forming phenomena: the geometry of nonequilibrium. Nato Asi series B, Plenum Press (Cargese Workshop Aug. 1988);Google Scholar
  19. Joets, A. and Ribotta, R. (1989) in the Proceedings of Nonlinear coherent structures in physics, mecnanics and biological systems (Paris, June 1988), J. de Phys. C3.Google Scholar
  20. [14]
    Brand, H.R., Lomdahl, P. and Newell, A. (1986) Evolution of the order parameter in situations with broken rotational symmetry, Phys. Let. A118, 67.ADSCrossRefGoogle Scholar
  21. 15.
    Lange, C.G. and Newell, A.C. (1974) SIAM J of Appl. Math. 27, 441 (1974)MathSciNetGoogle Scholar
  22. [16]
    Benjamin, T. B. and Feir, J. E. (1967) The disintegration of wave trains on deep water, J. Fluid Mech. 27, 417.ADSMATHCrossRefGoogle Scholar
  23. [17]
    Stuart, J.T. and DiPrima, R.C. (1978) “The Eckhaus and Benjamin-Feir resonance mechanisms”, Proc. R. Soc. Lond. A 362, 27.ADSCrossRefGoogle Scholar
  24. [18]
    Bretherton, C. S. and Spiegel, E. A. (1983) “Intermittency through modulational instability”, Phys. Lett. 96A, 152.ADSGoogle Scholar
  25. [19]
    Kuramoto, Y. (1984) “Phase dynamics of weakly unstable periodic structures”, Prog. Theor. Phys. 71, 1182.MathSciNetADSMATHCrossRefGoogle Scholar
  26. [20]
    Whitham, G.B. (1974) Linear and Nonlinear Waves, John Wiley & Sons, New York.MATHGoogle Scholar
  27. [21]
    Howard, L.N. and Kopell, N. (1977) “Slowly varying waves and shock structures in reaction-diffusion equations”, Stud. in Appl. Math. 56, 84.MathSciNetGoogle Scholar
  28. [22]
    Bemoff, A. (1988) “Slowly Varying Fully Nonlinear Wavetrains in the Ginzburg-Landau Equation”, Physica D30, 363.ADSGoogle Scholar
  29. [23]
    Joets, A. and Ribotta, R. (1986) “Hydrodynamic transitions to chaos in the convection of an anisotropic fluid”, J. Phys. (Paris) 47, 595.Google Scholar
  30. [24]
    de Gennes, P. G. (1974) The Physics of Liquid Crystals, Clarendon, Oxford.Google Scholar
  31. [25]
    Joets, A. and Ribotta, R. (1988) “Propagative structures and localization in the convection of a liquid crystal”, in, J.E. Wesfreid, H.R. Brand, P. Manneville, G. Albinet and N. Boccara, (eds.), Propagation in Systems far from Equilibrium Springer, Berlin;Google Scholar
  32. Joets, A. and Ribotta, R (1988) “Propagative patterns in the convection of a nematic liquid crystal”, in the Proceedings of the 12th International Liquid Crystals Conference, Aug. 1988, Freiburg), Liquid Crystals, London.Google Scholar
  33. [26]
    Joets, A. and Ribotta, R. (1988) “Localized time-dependent state in the convection of a nematic liquid crystal”, Phys. Rev. Lett. 60, 2164.ADSCrossRefGoogle Scholar
  34. [27]
    Yang, X. D., Joets, A. and Ribotta, R. (1986) “Singularities in the transition to chaos of a convective anisotropic fluid”, Physica 23D, 235.ADSGoogle Scholar
  35. [28]
    Ribotta, R. (1988) “Solitons, defects and chaos in dissipative systems”, in L. Kubin, G. Martin, (eds.), Non-linear phenomena in materials science, Trans Tech Publications, Switzerland.Google Scholar
  36. [36]
    Joets, A. and Ribotta, R. (1989) “Structure of defects in nonlinear waves”, preprint.Google Scholar
  37. [30]
    Joets, A. and Ribotta R. (1989) “Stability of defects of nonlinear waves in traveling-wave convection”, preprint.Google Scholar
  38. [31]
    Busse, F. H. (1972) “The oscillatory instability of convection rolls in a low Prandtl number”, J. Fluid Mech. 52, 97.ADSMATHCrossRefGoogle Scholar

Copyright information

© Kluwar Academic Publishers 1990

Authors and Affiliations

  • R. Ribotta
    • 1
  • A. Joets
    • 1
  1. 1.Laboratoire de Physique des SolidesUniversité de Paris-SudOrsay CedexFrance

Personalised recommendations