Spectral Properties and Molecular Structure of Protochlorophyll, Protochlorophyllide and Chlorophyllide-A Forms in Models and in Isolated Etioplast Membrane Fragments

  • B. Böddi

Abstract

Pioneering investigations of the chlorophyll biosynthesis have shown that the knowledge of the primary chemical structure of chlorophylls and their precursors is not nearly enough for understanding of the process of this biosynthesis. This is especially true for the final steps of this process; a large body of data has been accumulated about the complicated spectral phenomena during the phototransformation of protochlorophyllide (PChlide) into chlorophyllide-a (Chlide-a) and the phytilization process (see for review l). This, together with the spectral multiplicity of PChlide must be in connection with the differencies in the molecular interactions of the PChlide molecules and with the changes of these interactions (2,3).

Keywords

Micellar Solution Gaussian Component Membrane Fragment Negative Band Prolamellar Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    French, C.S. (1984) in Protochlorophyllide Reduction and Greening (Sironval, C. and Brouers, M., eds.), pp. 7–16, Martinus Nijhoff/Dr W. Junk Publishers, The HagueCrossRefGoogle Scholar
  2. 2.
    Virgin, H, (1981) Ann. Rev. Plant Physiol. 32, 451–463CrossRefGoogle Scholar
  3. 3.
    Van Der Cammen, J.C.J.M. and Goedheer (1984) in Protochlorophyllide Reduction and Greening (Sironval, C. and Brouers, M., eds.), pp. 191–194.CrossRefGoogle Scholar
  4. 4.
    Oliver, R.P. and Griffiths, W.T. (1982). Plant Physiol. 70, 1019–1025PubMedCrossRefGoogle Scholar
  5. 5.
    Ryberg, M. and Sundqvist, C. (1988) Physiol. Plant. 73, 218–226CrossRefGoogle Scholar
  6. 6.
    Virgin, H.(1975) Photosynthetica 9, 84–92Google Scholar
  7. 7.
    Ryberg, M. and Dehesh, K. (1986) Physiol. Plant. 66, 616–624CrossRefGoogle Scholar
  8. 8.
    Houssier, C. and Sauer, K. (1969) Biochim. Biophys. Acta 172, 492–502PubMedCrossRefGoogle Scholar
  9. 9.
    Shioi, Y. and Beale, S. I. (1987) Anal. Biochem. 162, 493–499PubMedCrossRefGoogle Scholar
  10. 10.
    Holt, A.S. and Jacobs, E.E. (1954) Am. J. Bot. 41, 710–717CrossRefGoogle Scholar
  11. 11.
    Böddi, B., Soós, J. and Láng, F. (1983) Biochim. Biophys. Acta 593, 158–165Google Scholar
  12. 12.
    Böddi, B., Kovács, K. and Láng, F. (1983) Biochim. Biophys. Acta 722, 320–326CrossRefGoogle Scholar
  13. 13.
    Böddi, B., Lindsten, A., Ryberg, M, and Sundqvist, C. (1989) Physiol, Plant. 76, 135–143CrossRefGoogle Scholar
  14. 14.
    Zenkevitsh, E.I. and Losev, A.P. (1972) Mol. Biol. 6, 824–832Google Scholar
  15. 15.
    Bystrova, M.I., Safronova, I.A. and Krasnovsky, A.A. (1982) Mol. Biol. 16, 291–301Google Scholar
  16. 16.
    Böddi, B. and Láng, F. (1981) Photobiochem. Photobiophys. 2, 321–328Google Scholar
  17. 17.
    Henningsen, K.W., Kahn, A. and Houssier, C. (1973) FEBS Lett. 37, 103–108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • B. Böddi
    • 1
  1. 1.Department of Plant PhysiologyEötvös UniversityBudapestHungary

Personalised recommendations