Molecular Basis of Resistance to Inhibitors of the cyt BC1 Complex in Photosynthetic Bacteria

  • Fevzi Daldal
  • Mariko K. Tokito

Abstract

The ubiquinol:cytochrome c oxidoreductase (or the cyt bc 1 complex) is a membrane-bound redox-driven proton pump present in mitochondria of eukaryotes and in many prokaryotes, including photosynthetic bacteria. A similar complex, cyt b 6 f, is also present in plant chloroplasts (1,2,3). During respiration and photosynthesis, these evolutionary well-conserved energy-transducing complexes catalyze electron transfer from lipid soluble quinol derivatives, ubiquinol and plastoquinol, to water soluble electron acceptors, cytochrome c and plastocyanin. in general, they always contain two b-type cytochromes, of different spectroscopic and thermodynamic properties (cyt b L and b H ), carried by a single polypeptide of approximately 40 kDa, a c-type cytochrome of about 30 kDa, and a 2Fe2S cluster containing protein of about 20 kDa (1,3). The structural genes of the three redox-active subunits of the cyt bc 1 complexes of various bacteria have been isolated and their nucleotide sequences have been determined (4,5,6,7). In Rhodobacter capsulatus these three genes are clustered and named fbc (4) or pet (5), with their 5′ to 3′ order being petA (fbcF) (Rieske FeS protein), petB (fbcB) (cyt b) and petC (fbcC) (cyt c 1 ).

Keywords

Paracoccus Denitrificans Conserve Histidine Residue Plasmid pRK404 Kink Helix F144L Substitution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prince, R. C. (1986) In Encyclopedia of Plant Physiology, New series, (Staehelin. L. A. and Arntzen, C. J., eds) vol 19 pp.539–546. Springer-Verlag, Berlin.Google Scholar
  2. 2.
    Cramer, W. A., Black, M. T., Widger, W. R. and Girvin, M. E. (1987) In The Light reactions (J. Barber, ed) pp. 447–493. Elsevier Science Publishers, Amsderdam.Google Scholar
  3. 3.
    Malkin, R. (1988) In ISI Atlas of Science: Biochemistry pp. 57–64.Google Scholar
  4. 4.
    Gabellini, N. and Sebald, W. (1986) Eur. J. Biochem. 154, 569–579.PubMedCrossRefGoogle Scholar
  5. 5.
    Davidson, E. and Daldal, F. (1987) J. Mol. Biol. 195, 13–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Kurowski, B. and Ludwig, B. (1987) J. Biol. Chem. 262, 13805–13811.PubMedGoogle Scholar
  7. 7.
    Thony-Meyer, L., Stax, D. and Hennecke, Hauke. (1989) Cell, 57, 683–697.PubMedCrossRefGoogle Scholar
  8. 8.
    Crofts, A. R. and Wraight, C. A. (1983) Biochim. Biophys. Acta. 726, 149–185.CrossRefGoogle Scholar
  9. 9.
    Rich, P. (1986) J. Bioener. and Biomem. 18, 145–155.CrossRefGoogle Scholar
  10. 10.
    Robertson, D. E. and Dutton, P. L. (1988) Biochim. Biophys. Acta 935, 273–291.PubMedCrossRefGoogle Scholar
  11. 11.
    von Jagow, G. and Link, T. A. (1986) In Methods in Enzymology (Fleischer, S. and Fleischer, B, eds.) vol 126, pp. 253–271.Google Scholar
  12. 12.
    Oettmeir, W., Godde, D., Kunze, B. and Hofle, G. (1985) Biochim. Biophys. Acta 807, 216–219.CrossRefGoogle Scholar
  13. 13.
    Nitschke, W., Hauska, G. and Rutherford, A. W. (1989) Biochim. Biophys. Acta 974, 223–226.CrossRefGoogle Scholar
  14. 14.
    Rich, P. (1984) Biochim. Biophys. Acta 768, 53–79.PubMedCrossRefGoogle Scholar
  15. 15.
    Daldal, F., Davidson, E., Cheng, S. Naiman, B. and Rook, S. (1986) In Microbial Energy Transduction (Youvan, D. C. and Daldal, F. eds) pp. 113–119. Cold Spring Harbor Press, Cold spring Harbor, NY.Google Scholar
  16. 16.
    Daldal, F., Davidson, E. and Cheng, S. (1987) J. Mol. Biol. 195, 1–12.PubMedCrossRefGoogle Scholar
  17. 17.
    Marrs, B. (1981) J. Bacteriol. 146, 1003–1012.PubMedGoogle Scholar
  18. 18.
    Ditta, G., Schimdhauser, T., Yacobson, E., Lu, P., Liang, X-W, Finlay, D., Guiney, D. and Helinski, D. R. (1985) Plasmid 13, 149–153.PubMedCrossRefGoogle Scholar
  19. 19.
    Maniatis, T., Frisch, E. F. and Sambrook, J. (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring harbor, N Y.Google Scholar
  20. 20.
    Robertson, D. E., Davidson, E., Prince, R. C., van den Berg, W., Marrs, B. L. and Dutton, P. L. (1986) J. Biol. Chem. 261, 584–591.PubMedGoogle Scholar
  21. 21.
    Widger, W. R., Cramer, W. A., Hermann, R. G. and Trebst, A. (1984) Proc. Natl. Acad. Sci. USA 81, 674–678.PubMedCrossRefGoogle Scholar
  22. 22.
    Saraste, M. (1984) FEBS Lett. 166, 367–372.PubMedCrossRefGoogle Scholar
  23. 23.
    di Rago, J. P., Coppee, J-Y, and Colson, A-M. (1989) J. Biol. Chem, in press.Google Scholar
  24. 24.
    Howell, N and Gilbert, K. (1988) J. Mol. Biol. 203, 607–618.PubMedCrossRefGoogle Scholar
  25. 25.
    Hauska, G., Nitschke, W. and Herrmann, R. G. (1988) J. Bioener. and Biomemb. 20, 211–228.CrossRefGoogle Scholar
  26. 26.
    Rao, J. K. M. and Argos, P. (1986) Biochim. Biophys. Acta 869, 197–214.CrossRefGoogle Scholar
  27. 27.
    Brasseur, R. (1988.) J. Biol. Chem. 263, 12571–12575.PubMedGoogle Scholar
  28. 28.
    von Jagow, G. and Ohnishi, T. (1985) FEBS Letters 185, 311–315.CrossRefGoogle Scholar
  29. 29.
    Kallas, T., Spiller, S. and Malkin, R. (1988) Proc. Natl. Acad. Sci. 85, 5794–5798.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Fevzi Daldal
    • 1
  • Mariko K. Tokito
    • 1
  1. 1.Department of Biology, Plant Science InstituteUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations