Evolutionary Relationships between Reaction Center Complexes with and without Cytochrome c Subunits in Purple Bacteria

  • Katsumi Matsuura
  • Keizo Shimada

Abstract

Two types of the photosynthetic reaction center (RC) complexes are known in purple bacteria, the distribution of which depends on bacterial species (1). In one type, the RC complexes have a cytochrome subunit with four c-type hemes. The other type of RC does not have the cytochrome subunit (Fig. 1). Three demensional structures of both types of RCs have been revealed in Rhodopseudomonas viridis (2) and Rhodobacter sphaeroides (3); the former has the bound cytochrome subunit. The major difference between the two types of RC is only in the presence or absence of the cytochrome subunit and the structure of the other three peptides with pigments and quinones is similar to each other. Evolutionary relationships between the two types of RC and the role of the bound cytochrome subunit are interesting subjects in the photosynthetic electron transfer system in purple bacteria.

Keywords

Reaction Center Purple Bacterium Rhodobacter Sphaeroides Photosynthetic Reaction Center Midpoint Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dutton, P.L. and Prince, R.C. (1978) in The Photosynthetic Bacteria (Clayton, R.K. and Sistrom, W.R. eds.), pp. 525–570, Plenum, New YorkGoogle Scholar
  2. 2.
    Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H. (1985) Nature 318, 618–626PubMedCrossRefGoogle Scholar
  3. 3.
    Allen, J.P., Feher, G., Yeates, T.O., Komiya, H. and Rees, D.C. (1987) Proc. Natl. Acad. Sci. USA 84, 6162–6166PubMedCrossRefGoogle Scholar
  4. 4.
    Woese, C.R. (1987) Microbiol. Rev. 51, 221–227PubMedGoogle Scholar
  5. 5.
    Matsuura, K. and Shimada, K. (1986) Biochim. Biophys. Acta 852, 9–18CrossRefGoogle Scholar
  6. 6.
    Fukushima, A., Matsuura, K., Shimada, K. and Satoh, T. (1988) Biochim. Biophys. Acta 933, 399–405CrossRefGoogle Scholar
  7. 7.
    Okamura, K., Miyata, T., Iwanaga, S., Takamiya, K. and Nishimura, M. (1987) J. Biochem. 101, 957–966PubMedGoogle Scholar
  8. 8.
    Urakami, T. and Komagata, K. (1988) J. Gen. Appl. Microbiol. 34, 67–84CrossRefGoogle Scholar
  9. 9.
    Shimada, K., Hayashi, H. and Tasumi, M. (1985) Arch. Microbiol. 143, 244–247CrossRefGoogle Scholar
  10. 10.
    Matsuura, K., Fukushima, A., Shimada, K. and Satoh, T. (1988) FEBS Lett. 237. 21–25CrossRefGoogle Scholar
  11. 11.
    Dickerson, R.E. (1980) Nature 283, 210–212PubMedCrossRefGoogle Scholar
  12. 12.
    Hiraishi, A, Hoshino, Y. and Kitamura, H (1984) J. Gen. Appl. Microbiol. 30, 197–210CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Katsumi Matsuura
    • 1
  • Keizo Shimada
    • 1
  1. 1.Department of BiologyTokyo Metropolitan UniversityTokyo 158Japan

Personalised recommendations