Characterization of P700 by FTIR Difference Spectroscopy

  • E. Nabedryk
  • M. Leonhard
  • W. Mäntele
  • J. Breton

Abstract

The primary photochemical act in photosynthesis leads to the generation of the radical cation of a specialized chlorophyll (Chl) or bacteriochlorophyll (BChl) species. For purple bacteria, the primary electron donor is a pair of BChl whose molecular structure has been extensively investigated by various spectroscopic techniques and recently elucidated by X-ray cristallography of the bacterial reaction center. In the absence of high-resolution X-ray data for green plant PS I and PS II, proposals for the structure and bonding interactions of their primary donor rely only on spectroscopy. In particular, the primary donor of PS I, P700, is probably a Chl a dimer, although several spectroscopic studies suggest that the positive charge in the P700+ radical cation is localized on only one of the two Chl molecules that comprise P700 (1–3). Model studies also incorporate a possible keto-enol tautomerization of Chl a upon P700 photooxidation (4,5).

Keywords

Differential Signal Purple Bacterium Cation Formation P700 Spectrum Resonance Raman 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wasielewski & al., (1981a) J. Am. Chem. Soc. 103, 7664–7665.CrossRefGoogle Scholar
  2. 2.
    O’Malley & Babcock (1984) Proc. Natl. Acad. Sci. U.S.A 81,1098–1101.PubMedCrossRefGoogle Scholar
  3. 3.
    Ikegami & Itoh (1988) Biochim.Biophys.Acta 934, 39–46.CrossRefGoogle Scholar
  4. 4.
    Wasielewski & al., (1981b) Proc. Natl. Acad. Sci. U.S.A 78, 2957–2961.PubMedCrossRefGoogle Scholar
  5. 5.
    Heald & al., (1988) J. Phys. Chem. 92, 4820–4824.CrossRefGoogle Scholar
  6. 6.
    Mäntele & al., (1985) FEBS Lett. 187, 227–232.CrossRefGoogle Scholar
  7. 7.
    Nabedryk & al., (1986) Photochem. Photobiol. 43, 461–465.CrossRefGoogle Scholar
  8. 8.
    Tavitian & al., (1986) FEBS Lett. 201, 151–157.CrossRefGoogle Scholar
  9. 9.
    Nabedryk & al., (1987) in Progress in Photosynthesis Research (Biggins, J. Ed.) Nijhof/Junk, Brussels, Vol. 1, pp. 177–180.Google Scholar
  10. 10.
    Mäntele & al., (1988a) Proc. Natl. Acad. Sci. U.S.A 85, 8468–8472.PubMedCrossRefGoogle Scholar
  11. 11.
    Mantele & al., (1988b) Photochem. Photobiol. 47, 451 -455.CrossRefGoogle Scholar
  12. 12.
    Pennington & al., (1964) J. Am. Chem. Soc. 86,1418–1426.CrossRefGoogle Scholar
  13. 13.
    Berger & al., (1987) J. Liquid Chromatogr. 10,1519–1531.CrossRefGoogle Scholar
  14. 14.
    Davis & al., (1979) Proc. Natl. Acad. Sci. U.S.A 76, 4170–4174.PubMedCrossRefGoogle Scholar
  15. 15.
    Tavitian (1987) Thesis, University P. et M. Curie, Paris VI.Google Scholar
  16. 16.
    Tavitian & al., (1988) in Spectroscopy of Biological Molecules-New Advances (Schmid, E.D., Schneider, F.W., & Siebert, F., Eds.), Wiley & Sons, pp. 297–300.Google Scholar
  17. 17.
    Nabedryk & al., (1988) in The Photosynthetic Bacterial Reaction Center: Structure and Dynamics (Breton & Vermeglio Eds.) NATO ASI Series, Vol.149, pp. 237–250.CrossRefGoogle Scholar
  18. 18.
    Barillot & al., (1989) Biophys. J. 55,180a.Google Scholar
  19. 19.
    Yeates & al., (1988) Proc. Natl. Acad. Sci. U.S.A 85, 7993–7997.PubMedCrossRefGoogle Scholar
  20. 20.
    J Moenne-Loccoz  & al., (1989) in Techniques and New Developments in Photosynthesis Research (Barber, J. Ed.) NATO ASI Series, Plenum, New York, (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • E. Nabedryk
    • 1
  • M. Leonhard
    • 2
  • W. Mäntele
    • 2
  • J. Breton
    • 1
  1. 1.Service de BiophysiqueCEN SaclayGif-sur-Yvette cedexFrance
  2. 2.Institut für Biophysik und StrahlenbiologieUniversität FreiburgFreiburgGermany

Personalised recommendations