Electron Transfer Reactions of Photosystem I Involving the Secondary Acceptor A1

  • Pierre Sétif
  • Hervé Bottin
  • Klaus Brettel

Abstract

The electron transport chain of photosystem I (PS I) comprises the primary donor P700 and five electron acceptors: the primary electron acceptor A0, which is a chlorophyll molecule, a secondary acceptor A1 and 3 iron-sulfur centers Fe-SA, Fe-SB and Fe-SX which act as tertiary electron acceptors. The knowledge of electron transfer pathways is far below in PS I compared to purple bacteria and PS II. Major controversial points are constituted by the electron transfer reactions concerning the secondary acceptor A1 and moreover by the chemical nature of this acceptor, although a lot of new data have accumulated in this field during the last few years.

Keywords

Reaction Center Triplet State Electron Transfer Reaction Purple Bacterium Recombination Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Interschick-Niebler, E. and Lichtenthaller, H.K. (1981) Z. Naturforsch. 36c, 276–283Google Scholar
  2. 2.
    Biggins, J. and Mathis, P. (1988) Biochemistry 27, 1494–1500PubMedCrossRefGoogle Scholar
  3. 3.
    Itoh, S., Iwaki, M. (1989) FEBS Lett. 243, 47–52CrossRefGoogle Scholar
  4. 4.
    Stehlik, D., Bock, C.H. and Petersen, J. (1989) J. Chem. Phys. 93, 1612–1619CrossRefGoogle Scholar
  5. 5.
    Brettel, K., Sétif, P. and Mathis, P. (1986) FEBS Lett. 203, 220–224CrossRefGoogle Scholar
  6. 6.
    Brettel, K. (1988) FEBS Lett. 239, 93–98CrossRefGoogle Scholar
  7. 7.
    Sétif, P. and Bottin, H. (1989) Biochemistry 28, 2689–2697CrossRefGoogle Scholar
  8. 8.
    Brettel, K. (1989) Biochim. Biophys. Acta, in pressGoogle Scholar
  9. 9.
    Bottin, H., Sétif, P. and Mathis, P. (1987) Biochim. Biophys. Acta 894, 39–48CrossRefGoogle Scholar
  10. 10.
    Lagoutte, B., Sétif, P. and Duranton, J. (1984) FEBS Lett. 174, 24–29CrossRefGoogle Scholar
  11. 11.
    Sétif, P., Bottin, H. and Mathis, P. (1985) Biochim. Biophys. Acta 808, 112–122CrossRefGoogle Scholar
  12. 12.
    Elstner E.F., Fischer, H.P., Osswald, W. and Kwiatkowski, G. (1980) Z. Naturforsch 35c, 770–775Google Scholar
  13. 13.
    Van Mieghem, F., Nitschke, W., Mathis, P. and Rutherford, A.W. (1989) Biochim. Biophys. Acta, in pressGoogle Scholar
  14. 14.
    Okamura, M.Y., Isaacson, R.A. and Feher, G. (1979) Biochim. Biophys. Acta 546, 394–417PubMedCrossRefGoogle Scholar
  15. 15.
    Chamorovsky, S.K. and Cammack, R. (1982) Photobiochem. Photobiophys. 4, 195–200Google Scholar
  16. 16.
    Den Blanken, H.J. and Hoff, A.J. (1983) Biochim. Biophys. Acta 724, 52–61Google Scholar
  17. 17.
    Bottin, H. and Mathis, P. (1985) Biochemistry 24, 6453–6460CrossRefGoogle Scholar
  18. 18.
    Bottin, H. and Sétif, P. (1988) Fifth European Bioenergetics Conference Aberystwyth, p 171Google Scholar
  19. 19.
    Inoue, K., Fujii, T., Yokoyama, E., Matsuura, K., Hiyama, T. and Sakurai, H. (1989) Plant Cell Physiol. 30, 65–71Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Pierre Sétif
    • 1
  • Hervé Bottin
    • 1
  • Klaus Brettel
    • 2
  1. 1.Dépt. Biologie, Sce BiophysiqueC.E.N. SaclayGif sur Yvette CedexFrance
  2. 2.Max-Volmer-Institut für Biophysik. und Physik. ChemieT.U. BerlinBerlin 12Germany

Personalised recommendations