Photoinhibition of Photosynthetic Bacteria

  • Robyn E. Cleland
  • Deborah Rees
  • David A. Walker
  • Peter Horton


Photoinhibition of higher plants encompasses a range of phenomena, many of which stem from the requirement to harmlessly dissipate excess light energy. These responses to light stress are manifest as a decrease in the quantum yield of photosynthesis and a quenching of chl fluorescence and primarily affect PS II. In intact plants a number of processes have been suggested to protect the photosynthetic apparatus from the potentially harmful effects of excessive light when dissipation through photosynthesis itself is exceeded. These include ΔpH [1], phosphorylation [2] and the xanthophyll cycle [3]. When the capacity of these processes is exceeded direct damage to a component or components involved in the photochemistry of PS II takes place [4,5,6].


Methyl Viologen Photosynthetic Bacterium Xanthophyll Cycle Cyclic Electron Flow Rhodobacter Capsulatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Krause, G.H. and Behrend, U. (1986) FEBS Lett. 200, 298–302.CrossRefGoogle Scholar
  2. [2]
    Horton, P. and Lee, P. (1985) Planta 165, 37–42.CrossRefGoogle Scholar
  3. [3]
    Demmig, B., Winter, K., Kruger, A. and Czygan, F.C. (1987) Plant Physiol. 84, 218–224.PubMedCrossRefGoogle Scholar
  4. [4]
    Cleland, R.E., Melis, A. and Neale, P.J. (1986) Photosynth. Res. 9, 79–88.CrossRefGoogle Scholar
  5. [5]
    Demeter, S., Neale, P.J. and Melis, A. (1987) FEBS Lett. 214, 370–374.CrossRefGoogle Scholar
  6. [6]
    Krause, G.H. (1988) Physiol. Plant. 74, 566–574.CrossRefGoogle Scholar
  7. [7]
    Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H., (1984) J. Mol. Biol. 180, 385–398.PubMedCrossRefGoogle Scholar
  8. [8]
    Nanba, and Satoh, K (1987) Proc. Natl. Acad. SciGoogle Scholar
  9. [9]
    Michel, H. and Deisenhofer, J. (1988) Biochem. 27, 1–7.CrossRefGoogle Scholar
  10. [10]
    Cleland, R.E. and Melis, A. (1987) Plant Cell Environ. 10, 747–752.Google Scholar
  11. [11]
    Kitajima, M. and Butler, W.L. (1975) Biochim. Biophys. Acta 376, 105–115.PubMedCrossRefGoogle Scholar
  12. [12]
    Butler, W.L. (1978) Ann. Rev. Plant Physiol. 29, 345–378.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Robyn E. Cleland
    • 1
  • Deborah Rees
    • 1
  • David A. Walker
    • 1
  • Peter Horton
    • 1
  1. 1.Robert Hill InstituteUniversity of SheffieldSheffieldUK

Personalised recommendations