The Role of Photosystem II D1 Apoprotein Metabolism in the Physiology of Photoinhibition

  • C. A. Shipton
  • J. B. Marder
  • J. Barber

Abstract

The reaction centre of photosystem II (PSII) contains several proteins including D2,D1, cytochrome b559 and the psbl gene product, and is closely associated with many others (proteins of the oxygen evolving complex, the 9kDa phosphoprotein, chlorophyll binding proteins and LHCII). Apart from the haem of cytochrome b559, D1 and D2 bind all the reaction centre pigments and also provide the quinone binding sites. Interestingly, only D1 consistently shows rapid light-driven turnover which may reflect a physiological need to replace photodamaged molecules of this polypeptide.

Keywords

Breakdown Product Cytochrome B559 Antigenic Site Pest Sequence Chlorophyll Binding Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kyle, D. (1985) Photochem. Photobiol. 41(1): 107–116.CrossRefGoogle Scholar
  2. 2.
    Arntzen, C.J. et al (1984) In: Biosyn. Photosyn. App., UCLA Symp. Series no. 14 pp 313–324.Google Scholar
  3. 3.
    Greenberg, B.M. et al (1987) EMBO J. 6: 2865–2869.PubMedGoogle Scholar
  4. 4.
    c.f. Posner, H.B. (1967) In: Meth. Dev. Bio. (eds. Witt, F.A. and Wessels, N.K.) Crowell, N.Y., pp 301–317.Google Scholar
  5. 5.
    Marder, J.B. et al (1986) Methods Enzymol. 118: 384–396.CrossRefGoogle Scholar
  6. 6.
    Marder, J.B. et al (1987) Plant Mol. Biol. 9: 325–333.CrossRefGoogle Scholar
  7. 7.
    Nixon, P.J. et al (1987) FEBS Lett. 209: 83–86.CrossRefGoogle Scholar
  8. 8.
    Schuster, G. et al (1988) EMBO J. 7: 1–6.PubMedGoogle Scholar
  9. 9.
    Trebst, A. (1986) Z. Naturforsch 41c: 240–245.Google Scholar
  10. 10.
    Barber, J. and Marder, J.M. (1986) Biotech. Genet. Eng. Revs. Vol. 4, Intercept, Newcastle-upon-Tyne, U.K. pp 355–404.Google Scholar
  11. 11.
    Sayre, R.T. et al (1986) Cell 47: 601–608.PubMedCrossRefGoogle Scholar
  12. 12.
    Curtis, S.E. and Haselkom, R. (1984) Plant Mol. Biol. 3: 249–258.CrossRefGoogle Scholar
  13. 13.
    Rogers, S. et al (1986) Science 234: 364–368.PubMedCrossRefGoogle Scholar
  14. 14.
    Ghoda, L. et al (1989) Science 243: 1493–1495.PubMedCrossRefGoogle Scholar
  15. 15.
    Gounaris, K. et al (1987) FEBS Lett. 211: 94–98.CrossRefGoogle Scholar
  16. 16.
    Reisfeid, A. et al (1982) Eur. J. Biochem. 124: 125–129.CrossRefGoogle Scholar
  17. 17.
    Marder, J.B. et al (1984) J. Biol. Chem. 259: 3900–3908.PubMedGoogle Scholar
  18. 18.
    Hopp, T.P. and Woods, K.R. (1981) Proc. Natl. Acad. Sci. USA 78: 3824–828.PubMedCrossRefGoogle Scholar
  19. 19.
    van Regenmortel, M.H.V. (1986) TIBS 11: 36–39.Google Scholar
  20. 20.
    Davies, D.D. (1982) In: Encylopedia of Plant Phys. New Series Vol. 14A, D. Boulter and B. Parthler (eds.) (Springer-Verlag, Berlin) pp 189–228.Google Scholar
  21. 21.
    Ferreira, R.B. and Davies, D.D. (1986) Planta 169: 278–288.CrossRefGoogle Scholar
  22. 22.
    Hilditch, P. et al (1989) Biosystems 22: 241–248.PubMedCrossRefGoogle Scholar
  23. 23.
    Wettern, M. and Galling, G. (1985) Plant 166: 474–482.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • C. A. Shipton
    • 1
  • J. B. Marder
    • 1
  • J. Barber
    • 1
  1. 1.AFRC Photosynthesis Research GroupImperial CollegeLondonUK

Personalised recommendations