Protein Configurational Fluctuation Dependence of the Electronic Tunnel Factor of Modified Metalloprotein Electron Transfer Systems and in Fast Direct and Superexchange Separation and Recombination in Bacterial Photosynthesis

  • Aleksandr. M. Kuznetsov
  • Jens Ulstrup
  • Merab G. Zakaraya
Conference paper
Part of the The Jerusalem Symposia on Quantum Chemistry and Biochemistry book series (JSQC, volume 22)

Abstract

Electron transfer (ET) reactions involving solute biological macromolecules such as metalloproteins, or electron exchanging pigment molecules fixed in transmembrane protein environments possess a number of distinctive features compared with ET reactions between “small” molecules. Some of these features are related to specific properties of the environmental reorganization terms or the inter-reactant work terms which for protein systems include diffusion-like, large amplitude protein conformational motion1−4 and nonlocal or image dielectric forces in both protein and external solvent5,6 A feature of fundamental importance is, however, that biological ET distances frequently exceed the geometric extension of the donor and acceptor groups. While inherent in common diabatic ET theory, this long-range electron tunnel feature raises several questions relating not only to orientation and distance between donor and acceptor groups but also to the relative importance of direct and superexchange ET, and to the effect of environmental configurational fluctuations on the electron tunnel factor.

Keywords

Electron Transfer Transition Matrix Element Electronic Factor Free Energy Relation Inverted Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frauenfelder, H., Petsko, G.A. and Tsernoglou, D. (1979) Nature 280, 558.PubMedCrossRefGoogle Scholar
  2. 2.
    McGammon, J.A. and Karplus, M. (1983) Ann.Rev.Phys.Chem. 31, 29.CrossRefGoogle Scholar
  3. 3.
    Welch, G.R. (ed.) (1986) The Fluctuating Enzyme, Whiley, New York.Google Scholar
  4. 4.
    Sumi, H. and Ulstrup, J. (1988) Biochim.Biophys.Acta 955, 26.PubMedCrossRefGoogle Scholar
  5. 5.
    For a review, see: Kuznetsov, A.M. and Kharakats, Yu.I. (1987) in Kazarinov, V.E. (ed.) The Interface Structure and Electrochemical Processes at the Boundary between Two Immiscible Liquids, Springer-Verlag, Berlin, p. 11.Google Scholar
  6. 6.
    Kjær, A.M. and Ulstrup, J. (1987) Inorg.Chem. 26, 2052.CrossRefGoogle Scholar
  7. 7.
    For a recent review, see: Kuznetsov, A.M., Ulstrup, J. and Vorotyntsev, M.A. (1988) in Dogonadze, R.R., Kalman, E., Kornyshev, A.A. and Ulstrup, J. (eds.) The Chemical Physics of Solvation. Part C, Elsevier, Amsterdam, p. 163.Google Scholar
  8. 8.
    Sykes, A.G. (1985) Chem.Soc.rev. 14, 283.CrossRefGoogle Scholar
  9. 9.
    Nettesheim, D.G., Johnson, W.V. and Feinberg, B.A. (1980) Biochim.Biophys.Acta 593, 371.PubMedCrossRefGoogle Scholar
  10. 10.
    Armstrong, F.A. (1982) in Sykes, A.G. (ed.) Adv.Bioinorg.Mech. 1, 65.Google Scholar
  11. 11.
    Nocera, D.G., Winkler, J.R., Yocom, K.M., Bordignon, E. and Gray, H.B. (1984) J.Amer.Chem.Soc. 106, 5145.CrossRefGoogle Scholar
  12. 12.
    Isied, S.S., Kuehn, C. and Worosila, G. (1984) J.Amer.Chem.Soc. 106, 1722.CrossRefGoogle Scholar
  13. 13.
    Osvath, P., Salmon, G.A. and Sykes, A.G. (1988) J.Amer.Chem.Soc. 110, 7114.CrossRefGoogle Scholar
  14. 14.
    Kostic, N.M., Margalit, R., Che, C.-M. and Gray, H.B. (1983) J.Amer.Chem.Soc. 105, 7765.CrossRefGoogle Scholar
  15. 15.
    Jackman, M.P., Lim, M.-C, Sykes, A.G. and Salmon, G.A. (1988) J.Chem.Soc.Dalton Trans. 2843.Google Scholar
  16. 16.
    Axup, A.W., Albin, M., Mayo, S.L., Crutcley, R.J. and Gray, H.B. (1988) J.Amer.Chem.Soc. 110, 435.CrossRefGoogle Scholar
  17. 17.
    Peterson-Kennedy, S.E., McGourty, J.L., Kalweit, J.A. and Hofman, B.M. (1986) J.Amer.Chem.Soc. 108, 1739.CrossRefGoogle Scholar
  18. 18. a.
    McLendon, G. (1988) Acc.Chem.Res. 21, 160CrossRefGoogle Scholar
  19. 18. b.
    Conklin, K.T. and McLendon, G. (1988) J.Amer.Chem.Soc. 110, 3345.CrossRefGoogle Scholar
  20. 19.
    For a review, see: Armstrong, F.A., Hill, H.A.O. and Walton, N.J. (1988) Acc.Chem.Res. 21, 407.CrossRefGoogle Scholar
  21. 20.
    Degani, Y. and Heller, A. (1987) J.Phys.Chem. 91, 1285.CrossRefGoogle Scholar
  22. 21.
    Kuznetsov, A.M., Bogdanovakaya, V.A., Tarasevich, M.R. and Gavrilova, E.F. (1987) FEBS Lett. 215, 219, and references there.CrossRefGoogle Scholar
  23. 22.
    Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, R. (1984) J.Mol.Biol. 180, 385.PubMedCrossRefGoogle Scholar
  24. 23. a.
    For recent reviews, see: Michel-Beyerle, M.E. (ed.) (1985) Antennas and Reaction Centres of Photosynthetic Bacteria, Springer-Verlag, BerlinGoogle Scholar
  25. 23. b.
    Breton, J. and Vermeglio, A. (eds.) (1988) The Photosynthetic Bacterial Reaction Centre, Structure and Dynamics, Plenum, New York.Google Scholar
  26. 24. a.
    Kuznetsov, A.M. (1981) Nouv.J.Chim. 5, 427Google Scholar
  27. 24. b.
    Kuznetsov, A.M. and Ulstrup, J. (1982) Faraday Disc. Chem.Soc. 74, 31CrossRefGoogle Scholar
  28. 24. c.
    Kuznetsov, A.M. and Ulstrup, J. (1986) in Jortner, J. and Pullman, B. (eds.) Tunnelling, Reidel, Dordrecht, p. 345.Google Scholar
  29. 25.
    Dogonadze, R.R., Kuznetsov, A.M., Vorotyntsev, M.A. and Zakaraya, M.G. (1977) J.Electroanal.Chem. 75, 315.CrossRefGoogle Scholar
  30. 26.
    Itskovitch, E.M. and Kuznetsov, A.M. (1980) Elektrokhimiya 16, 755.Google Scholar
  31. 27.
    Jortner, J. (1976) J.Chem.Phys. 64, 4860.CrossRefGoogle Scholar
  32. 28.
    Ray, P.S. (1972) Appl.Optics 11, 1836.CrossRefGoogle Scholar
  33. 29.
    Fletcher, N.H. (1970) The Chemical Physics of Ice, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  34. 30.
    Go, N. Noguti, T. and Nishikawa, T. (1983) Proc.Nat.Acad.Sci.USA 80, 1683.CrossRefGoogle Scholar
  35. 31.
    Frolich, H.A. (1958) Theory of Dielectrics, 2nd ed., Clarendon, Oxford.Google Scholar
  36. 32.
    Ovchinnikov, A.A. and Ovchinnikova, M.Ya. (1969) Zhur.Eksp.Tero.Fiz. 56, 1278.Google Scholar
  37. 33.
    Kuznetsov, A.M. and Ulstrup, J. (1986) Chem.Phys. 107, 381.CrossRefGoogle Scholar
  38. 34.
    Mikkelsen, K.V., Ulstrup, J. and Zakaraya, M.G. (1989) J.Amer.Chem.Soc. 111, 1315.CrossRefGoogle Scholar
  39. 35.
    Kuznetsov, A.M. and Ulstrup, J. (1989) Bioelectrochem.Bioeng., in press.Google Scholar
  40. 36. a.
    Anderson, P.V. (1950) Phys.Rev. 79, 350CrossRefGoogle Scholar
  41. 36. b.
    Halpern, J. and Orgel, L.E. (1960) DiscFaraday Soc. 29, 32Google Scholar
  42. 36. c.
    McConnell, H.M. (1961) J.Chem.Phys. 35, 508.CrossRefGoogle Scholar
  43. 37.
    Jortner, J. and Bixon, M. (1987) in Austin, R., Bukhs, E., Chance, B., DeVault, D., Dutton, P.L., Frauenfelder, H. and Goldanskij, V.I. (eds.) Protein Structure, Molecular and Electronic Reactivity, Springer-Verlag, New York, p.277.Google Scholar
  44. 38.
    Zakaraya, M.G. and Ulstrup, J. in preparation.Google Scholar
  45. 39.
    Kornyshev, A.A. (1985) in Dogonadze, R.R., Kalman, E., Kornyshev, A.A. and Ulstrup, J. (eds.) The Chemical Physics of Solvation. Part A, Elsevier, Amsterdam, 1985 p. 77.Google Scholar
  46. 40. a.
    Levich, V.G., Madumarov, A.K. and Kharkats, Yu.I. (1972) Dokl.Akad.Nauk SSSR, Ser.Fiz.Khim. 203, 135Google Scholar
  47. 40. b.
    Dogonadze, R.R., Kharkats, Yu.I. and Ulstrup, J. (1972) J.Electroanal.Chem. 39, 47CrossRefGoogle Scholar
  48. 40. c.
    Kharkats, Yu.I., Madumarov, A.K. and Vorotyntsev, M.A. (1974) J.Chem.Soc.Faraday Soc.II 70, 1578CrossRefGoogle Scholar
  49. 40. d.
    Kuznetsov, A.M. and Kharkats, Yu.I. (1976) Elektrokhimiya 12, 1277Google Scholar
  50. 40. e.
    Kuznetsov, A.M. and Ulstrup, J. (1981) J.Chem.Phys. 75, 2047.CrossRefGoogle Scholar
  51. 41.
    Newton, M.D. (1980) Int.J.Quant.Chem.Symp. 14, 363.Google Scholar
  52. 42.
    Larsson, S. (1981) J.Amer.Chem.Soc. 103, 4034.CrossRefGoogle Scholar
  53. 43.
    Ohta, K., Closs, G.L. Murukuma, K. and Green, N.J. (1986) J.Amer.Chem.Soc. 108, 1319.CrossRefGoogle Scholar
  54. 44.
    Beratan, D.N. and Hopfield, J.J. (1984) J.Amer.Soc. 106, 1584.CrossRefGoogle Scholar
  55. 45.
    Mikkelsen, K.V., Dalgaard, E. and Swanstrøm, P. (1987) J.Phys.Chem. 91, 3081.CrossRefGoogle Scholar
  56. 46.
    Duke, C.B. (1979) in Chance, B., De Vault, D.C., Frauenfelder, H., Marcus, R.A., Schrieffer, J.R. and Sutin, N. (eds.) Tunnelling in Biological Systems, Academic Press, p. 31.Google Scholar
  57. 47.
    Kuznetsov, A.M. and Ulstrup, J. (1982) Phys.Stat.Sol. 114, 673.CrossRefGoogle Scholar
  58. 48.
    Ulstrup, J. (1980) Surf.Sci. 101, 564, and references there.CrossRefGoogle Scholar
  59. 49.
    Schmickler, W. and Schultze, J.W. (1986) Mod.Asp.Electrochemistry 17, 347.Google Scholar
  60. 50.
    Dogonadze, R.R., Kuznetsov, A.A. and Ulstrup, J. (1977) J.Theor.Biol. 69, 239.PubMedCrossRefGoogle Scholar
  61. 51.
    Sumi, H. (1984) J.Phys. C 17, 6071.CrossRefGoogle Scholar
  62. 52.
    Zakaraya, M.G. and Ulstrup, J. (1989) Chem.Phys., in press.Google Scholar
  63. 53.
    Ogrodnik, A., Volk, M. and Michel-Beyerle, M.E. (1987) in Breton, J. and Vermeglio, A. (eds.) The Photosynthetic Bacterial Reaction Centre, Structure and Dynamics, Plenum, New York, p. 177.Google Scholar
  64. 54.
    Fleming, G.R., Martin, J.L. and Breton, J. (1988) Nature 333, 190.CrossRefGoogle Scholar
  65. 55.
    Bixon, M., Jortner, J., Michel-Beyerle, M.E., Ogrodnik, A., and Lersch, W. (1987) Chem.Phys.Lett. 140, 626.CrossRefGoogle Scholar
  66. 56.
    Bixon, M. and Jortner, J. (1988) J.Phys.Chem. 92, 7148.CrossRefGoogle Scholar
  67. 57.
    Michel-Beyerle, M.E.; Bixon, M. and Jortner, J. (1988) Chem.Phys.Lett. 151, 188.CrossRefGoogle Scholar
  68. 58.
    Michel-Beyerle, M.E., Plato, M., Deisenhofen J., Michel, M., Bixon, M. and Jortner, J. (1988) Biochim.Biophys.Acta 932, 52.CrossRefGoogle Scholar
  69. 59.
    Schenck, C.C., Blankenship, R.R. and Parson, W.W. (1985) Biochim.Biophys.Acta 680, 44.Google Scholar
  70. 60.
    Goldenstein, R.A., Tahiff, K. and Boxer, S.G. (1988) Biochim.Biophys.Acta 934, 253, and references there.CrossRefGoogle Scholar
  71. 61. a.
    Marcus, R.A. (1987) Chem.Phys.Lett. 133, 471CrossRefGoogle Scholar
  72. 61. b.
    Marcus, R.A. (1988) Chem.Phys.Lett. 146, 13.CrossRefGoogle Scholar
  73. 62.
    Itskovitch, E.M., Ulstrup, J. and Vototyntsev, M.A. (1986) in Dogonadze, R.R., Kalman, E., Kornyshev, A.A. and Ulstrup, J. (eds.) in The Chemical Physics of Solvation. Part B, Elsevier, Amsterdam, p. 223.Google Scholar
  74. 63.
    Kjær, A.M. and Ulstrup, J. (1987) J.Amer.Chem.Soc. 109, 1934.CrossRefGoogle Scholar
  75. 64.
    Feher, G., Okamura, M. and Kleinfeld, D. (1987) in Austin, R., Bukhs, E., Chance, B., De Vault, D.C., Dutton, P.L., Frauenfelder, H. and Goldanskij, V.I. (eds.) Molecular and Electronic Reactivity, Springer-Verlag, New York, p. 399.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Aleksandr. M. Kuznetsov
    • 1
  • Jens Ulstrup
    • 2
  • Merab G. Zakaraya
    • 2
  1. 1.The A.N. Frumkin Institute of Electrochemistry of the Academy of Sciences of the USSRMoscowUSSR
  2. 2.Chemistry Department AThe Technical University of DenmarkLyngbyDenmark

Personalised recommendations