The critical ATP threshold hypothesis

  • P. G. Spieckermann
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 104)

Abstract

Despite the discussions in other sections of this book on the final causes of cell death, this chapter will analyse whether any correlation exists during ischemia between the cellular energetic situation and disturbances of functions, metabolism and structure of myocardial cells. In this context, the question arises as to whether a critical cellular ATP level marks the transgression from a living to a dead cell, marking a ‘point of no return’.

Keywords

Myocardial Oxygen Consumption Cardioplegic Solution High Energy Phosphate Disturbed Function Left Heart Bypass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reimer KA, Jennings RB (1986) Myocardial Ischemia, Hypoxia and Infarction. In: HA Fozzard et al. (ed) The Heart and Cardiovascular System. New York, p 1133Google Scholar
  2. 2.
    Opitz E, Schneider M (1950) Über die Sauerstoffversorgung des Gehirns und den Mechanismus von Mangelwirkungen. Ergebn Physiol 46: 126Google Scholar
  3. 3.
    Schneider M (1958) Über die Wiederbelebung nach Kreislaufunterbrechung. Thoraxchirurgie 6:95PubMedGoogle Scholar
  4. 4.
    Schneider M (1964) Die Wiederbelebungszeit verschiedener Organe nach Ischämie. Langenbecks Arch Klin Chir 308: 252CrossRefGoogle Scholar
  5. 5.
    Kreuzer H, Schoeppe W (1963) Der Myokarddruck bei veränderter Koronardurchblutung und bei Ischämie. Pflügers Arch ges Physiol 278: 209CrossRefGoogle Scholar
  6. 6.
    Prinzmetal M, Schwarzt LL, Corday E, Spritzler R, Bergmann HC, Krüger HE (1949) Studies on the coronary circulation. VI. Loss of cardiac contractility after coronary artery occlusion. Ann intern Med 31: 429PubMedGoogle Scholar
  7. 7.
    Sayen JJ, Sheldon WF, Peirce G, Kuo PT (1958) Polarographic oxygen in experimental acute regional ischemia of the left ventricle. Circulat Res 6: 779PubMedGoogle Scholar
  8. 8.
    Sayen JJ, Sheldon WF, Peirce G, Kou PT (1954) Motion picture studies of ventricular muscle dynamics in experimental localized ischemia, correlated with myocardial oxygen tension and electrocardiograms. J Clin Invest 33: 962Google Scholar
  9. 9.
    Tennant R, Wiggers CJ (1935) The effect of coronary occlusion on myocardial contraction. Amer J Physiol 112: 351Google Scholar
  10. 10.
    Bretschneider HJ (1964) Überlebenszeit und Wiederbelungszeit des Herzens bei Normo-und Hypothermie. Verh Dtsch Ges Kreislaufforsch 30: 11PubMedGoogle Scholar
  11. 11.
    Fabel H, Lübbers DW, Rybak R (1964) Die Bestimmung des Myoglobingehaltes und des kritischen Sauerstoffdruckes am schlagenden Kaninchenherzen ‘in situ’. Pflügers Arch ges Physiol 279: R32Google Scholar
  12. 12.
    Lübbers DW (1968) Intercapillärer O2-Transport und intracelluläre Sauerstoffkonzentration. In: Biochemie des Sauerstoffs. 19. Colloquium der Gesellschaft für Biologischie Chemie (Berlin — Heidelberg — New York) S67Google Scholar
  13. 13.
    Sugar O, Gerard RW (1938) Anoxia and brain potentials. J Neurophysiol 1: 558Google Scholar
  14. 14.
    Serruys PW, Meester GT (eds) (1986) Coronary Angioplasty: A controlled model for ischemia. Dordrecht — Boston — LancasterGoogle Scholar
  15. 15.
    Porter WT (1894) On the ligation of the coronary arteries. J Physiol 15: 121Google Scholar
  16. 16.
    Cooley DA, Reul GJ and Wukasch DC (1972) Ischemic contracture of the heart:’ stone heart.’ Am J Cardiol 29: 575PubMedCrossRefGoogle Scholar
  17. 17.
    Rusch H (1898) Experimentelle Studien über Ernährung des isolierten Säugerherzens. Pflügers Arch ges Physiol 7: 533Google Scholar
  18. 18.
    Blumgart AL, Gittigan DR, Schlesinger MJ (1941) Experimental studies on the effect of temporary occlusion of coronary arteries. II. The production of myocardial infarction. Am Heart J 22: 374CrossRefGoogle Scholar
  19. 19.
    Jennings RB, Baum JH, Herdson PB (1965) Fine structural changes in myocardial ischemic injury. Arch Path 79: 135PubMedGoogle Scholar
  20. 20.
    Milnes RF, Woude RV, Sloan H (1958) Extended asystole. Arch Surg 77: 13Google Scholar
  21. 21.
    Spieckermann PG, Überlebens-und Wiederbelebungszeit des Herzens. Anaesthesiology and Resuscitation Vol 66. Berlin: SpringerGoogle Scholar
  22. 22.
    Kübler W and Spieckermann PG (1970) Regulation of glycolysis in the ischemic and anoxic myocardium. J Mol Cell Cardiol 1: 351PubMedCrossRefGoogle Scholar
  23. 23.
    Eggleton CP and Eggleton P (1929) A method of estimating phosphagen and some other phosphorous compounds in muscle tissue. J Physiol 68: 193PubMedGoogle Scholar
  24. 24.
    Hohorst HJ, Reim M and Bartels H (1962) Studies on the creatine kinase equilibrium in muscle and the significance of ATP and ADP levels. Biochem Biophys Res Commun 7: 142PubMedCrossRefGoogle Scholar
  25. 25.
    Hübner G (1971) Electron microscopic investigation of cardioplegia: Electron microscopy of various forms of cardiac arrest in correlation with myocardial function. Methods Archiev Exp Pathol 5: 518Google Scholar
  26. 26.
    Kübier W, Grebe D, Orellano LE, Spieckermann PG and Bretschneider HJ (1968) Zur Bewertung des Gewebsgehaltes der energiereichen Phosphate für die Pathogenese der Herzinsuffizienz In: Reindell H, Keul J, and Doll E (eds) Herzinsuffizienz: Pathophysiologie und Klinik. Stuttgart: Thieme p 226Google Scholar
  27. 27.
    Braasch W, Gudbjarnason S, Puri PS, Ravens KG and Bing RJ (1968) Early changes in energy metabolism in the myocardium following coronary artery occlusion in anesthetized dogs. Circ Res 23: 429PubMedGoogle Scholar
  28. 28.
    Gudbjernason S, Mathes P, Ravens KG (1970) Functional compartmentation of ATP and creatine phosphate in heart muscle. J Mol Cell Cardiol 1: 325CrossRefGoogle Scholar
  29. 29.
    Jennings RB, Hawkins HK, Lowe JE, Hill ML, Klotman S, Reimer KA (1977) Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol 92: 187Google Scholar
  30. 30.
    Reibel DK, Rovetto MJ (1979) Myocardial adenosine salvage rates and restoration of ATP content following ischemia. Am J Physiol 237: H247PubMedGoogle Scholar
  31. 31.
    Isselhard W (1968) Einfluß von Prenylamin auf Herz-und Gehirnstoffwechsel und auf die Myokardfunktion. In: Moser K, Lujf A (eds) Beta-Rezeptorenblockade in Klinik und Experiment. Wien p 87Google Scholar
  32. 32.
    Kammermeier H (1964) Verhalten von Adenin-Nucleotiden und Kreatinphosphat im Herzmuskel bei funktioneller Erholung nach länger dauernder Asphyxie. Verh dtsch Ges Kreisl-Forsch 30: 206Google Scholar
  33. 33.
    Jennings RB, Reimer KA (1981) Lethal myocardial injury. Am J Pathol 102: 241PubMedGoogle Scholar
  34. 34.
    Grinwald PM, Hearse DJ, Segal MB (1980) A possible mechanism of glycolytic impairment after adenosine triphosphate depletion in the perfused rat heart. J Physiol 301: 337PubMedGoogle Scholar
  35. 35.
    Neely JR, Grotjohann LW (1984) Role of glycolytic products in damage to ischemic myocardium. Circ Res 55: 816PubMedGoogle Scholar
  36. 36.
    Poole-Wilson PA (1984) What causes cell death. In: Hearse DJ, Yellon DM (eds) Therapeutic approaches to myocardial infarct size limitation. New York p 43Google Scholar
  37. 37.
    Bretschneider HJ, Gebhard MM, Preusse CJ (1984) Cardioplegia, Principles and Problems. In: Sperelakis N (ed) Physiology and Pathophysiology of the heart. BostonGoogle Scholar
  38. 38.
    Isselhard W, Mäurer W, Stemmel W, Krebs J, Schmitz H, Neuhof H, Esser A (1970) Stoffwechsel des Kaninchenherzens in situ während Asphyxie und in der postasphyktischen Erholung. Pflügers Arch ges Physiol 316: 164CrossRefGoogle Scholar
  39. 39.
    Kammermeier H (1964) Verhalten von Adeninnucleotiden und Kreatinphosphat im Herzmuskel bei funktioneller Erholung nach länger dauernder Asphyxie. Verh dtsch Ges Kreisl-Forsch 30: 206Google Scholar
  40. 40.
    De Boer LWV, Ingwall JS, Kloner RA, Braunwald E (1989) Prolonged derangements of canine myocardial purine metabolism after a brief coronary artery occlusion not associated with anatomic evidence of necrosis. Proc Natl Acad Sci (USA) 77: 5471CrossRefGoogle Scholar
  41. 41.
    Zimmer HG, Ibel H (1984) Ribose accelerates the repletion of the ATP pool during recovery from reversible ischemia of the rat myocardium. J Mol Cell Cardiol 16: 863PubMedCrossRefGoogle Scholar
  42. 42.
    Humphrey SM, Holiss DG, Seelye RN (1985) Myocardial adenine pool depletion and recovery of mechanical function following ischemia. Am J Physiol 248: H644PubMedGoogle Scholar
  43. 43.
    Zimmer HG, Trendelenburg C, Kammermeier H, Gerlach E (1973) De novo synthesis of myocardial adenine nucleotides in the rat. Circ Res 32: 635PubMedGoogle Scholar
  44. 44.
    Piper HM, Schwartz P, Hütter JF, Spieckermann PG (1984) Energy metabolism and enzyme release of cultured adult rat heart muscle cells during anoxia. J Mol Cell Cardiol 16: 995PubMedCrossRefGoogle Scholar
  45. 45.
    Piper HM, Sezer O, Schleyer M, Schwartz P, Hütter JF, Spieckermann PG (1985) Development of ischemia induced damage in defined mitochondrial subpopulations. J Molec Cell Cardiol 17: 125Google Scholar
  46. 46.
    Gettes LS (1986) Effect of ischemia on cardiac electrophysiology. In: Fozzard HA et al. (ed) The heart and cardiovascular system. New York p 1317Google Scholar
  47. 47.
    Holubarsch C, Alpert NR, Goulette R, Mulieri LA (1982) Heat production during hypoxic contracture of rat myocardium. Circ Res 51: 777PubMedGoogle Scholar
  48. 48.
    Lewis MJ, Housmans PR, Claes VA, Brutsaert DL, Henderson AH (1980) Myocardial stiffness during hypoxic and reoxygenation contracture. Cardiovasc Res 14: 339PubMedCrossRefGoogle Scholar
  49. 49.
    Ventura-Clapier R, Vassort G (1981) Rigor tension during metabolic and ionic rises in resting tension in rat heart. J Mol Cell Cardiol 13: 551PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • P. G. Spieckermann
    • 1
  1. 1.Institute of Medical PhysiologyUniversity of ViennaAustria

Personalised recommendations