Abstract
How fish see has probably puzzled anyone who has ever opened their eyes underwater whilst swimming to discover a shimmering unfocused world. It has certainly intrigued both scientists and fishermen, because fish appear to see quite well indeed. The eyes of fishes, like those of other familiar animals, have evolved adaptations responsible for two main visual functions: (1) to collect light, and (2)to form a focused image for analysis by the retina. In fish, the additional challenge of seeing underwater has resulted in novel solutions to these fundamental problems. This chapter will discuss two major features of fish visual systems: optics, which is the collection of light and formation of an image by the lens, and accommodation, which is the focusing of images on the retina.
Keywords
Spherical Aberration Chromatic Aberration Spherical Lens Retinal Illuminance Lens DiameterPreview
Unable to display preview. Download preview PDF.
References
- Axelrod, D., Lerner, D. and Sands, P.J. (1988) Refractive index within the lens of a goldfish eye, determined from the paths of thin laser beams. Vision Res., 28, 57–65.Google Scholar
- Beer, T. (1894) Die Accommodation des Fischauges. Pflügers Arch. ges. Physiol., 58, 523–650.CrossRefGoogle Scholar
- Brewster, D. (1816) On the structure of the crystalline lens in fishes and quadrupeds, as ascertained by its action on polarized light. Phil. Trans. R. Soc., 311–17.Google Scholar
- Charman, W.N. and Tucker, J. (1973) The optical system of the goldfish eye. Vision Res., 13, 1–8.CrossRefGoogle Scholar
- Eberle, H. (1968) Zapfenbau, Zapfenlaenge und Chromatische Aberration im Auge von Lebistes reticulatus (Peters Guppy). Zool. Jb., Abt. Allgemeine Zool. Physiol. Tiere, 74, 121–54.Google Scholar
- Fagerholm, P., Philipson, B.T. and Lindstroem, B. (1981) Normal human lens — the distribution of protein. Expl Eye Res., 33, 615–20.CrossRefGoogle Scholar
- Fernald, R.D. (1985) Growth of the teleost eye: novel solutions to complex constraints. Environ. Biol. Fishes, 13, 113–23.CrossRefGoogle Scholar
- Fernald, R.D. (1988) Aquatic adaptations in fish eyes, in Sensory Biology of Aquatic Animals (eds J. Atema, R.R. Fay, A.N. Popper and W.N. Tavolga ), Springer- Verlag, Berlin, pp. 435–66.Google Scholar
- Fernald, R.D. and Wright, S.E. (1983) Maintenance of optical quality during crystalline lens growth. Nature, Lond., 301, 618–20.CrossRefGoogle Scholar
- Fernald, R.D. and Wright, S.E. (1985a) Growth of the visual system of the African cichlid fish, Haplochromis burtoni: optics. Vision Res., 25, 155–61.Google Scholar
- Fernald, R.D. and Wright, S.E. (1985b) Growth of the visual system of the African cichlid fish, Haplochromis burtoni: accommodation. Vision Res., 25, 163–70.CrossRefGoogle Scholar
- Fincham, W.H.A. (1959) Optics, Hatton Press, London.Google Scholar
- Fletcher, A., Murphey, T. and Young, A. (1954) Solutions of two optical problems. Proc. R. Soc., A, 223, 216–25.Google Scholar
- Fredrikson, R.D. (1973) On the retinal diverticula in the tubular-eyed opisthoproctid deep-sea fishes Macropinna microstoma and Dolichopteryx longipes. Vidensk. Meddr Dansk Naturh. Foren., 136, 233–44.Google Scholar
- Hueter, R.E. and Gruber, S.H. (1980) Retinoscopy of the aquatic eye. Vision Res., 20, 197–200.CrossRefGoogle Scholar
- Kimura, K. and Tamura, T. (1966) On the direction of the lens movement in the visual accommodation of teleostean eye. Bull. Jap. Soc. Scient. Fish., 32, 112–16.Google Scholar
- Land, M.F. (1981) Optics and vision in invertebrates, in Handbook of Sensory Physiology VII/6B (ed. H.J. Autrum ), Springer-Verlag, Berlin, pp. 471–592.Google Scholar
- Lockett, N.A. (1977) Adaptations to the deep-sea environment, in Handbook of Sensory Physiology, VII/5 (ed. R. Crescitelli ), Springer-Verlag, Berlin, pp. 67–192.Google Scholar
- Luneberg, R.K. (1944) Mathematical Theory of Optics, Brown University Press, Providence, RI, pp. 208–13.Google Scholar
- Lythgoe, J.N. (1979) The Ecology of Vision, Clarendon Press, Oxford.Google Scholar
- Marshall, N.B. (1971) Explorations in the Life of Fishes, Harvard University Press, Cambridge, Mass.Google Scholar
- Martin, G.R. (1977) Absolute visual threshold and scotopic spectral sensitivity in the tawny owl, Strix aluco. Nature, Lond., 268, 636–8.CrossRefGoogle Scholar
- Matthiessen, L. (1882) Über die Beziehungen, Welche Zwischen dem Brechungsindex des Kernzentrums der Krystallinse und den Dimensionen des Auges Bestehen. Pflügers Arch. ges. Physiol., 27, 510–23.CrossRefGoogle Scholar
- Matthiessen, L. (1886) Über den physikalisch-optischen Bau der Auges des Cetacean und der Fische. Pflügers Arch. ges. Physiol., 38, 521–8.CrossRefGoogle Scholar
- Maxwell, J.C. (1854) Some solutions of problems. Cambridge and Dublin Mathematical Journal, 8, 188–95.Google Scholar
- Moreland, J.D. and Lythgoe, J.N. (1968) Yellow corneas in fishes. Vision Res., 8, 1377–80.CrossRefGoogle Scholar
- Munk, O. (1966) Ocular anatomy of some deep-sea teleosts. Dana Rep. Carlsberg Found., 70, 1–62.Google Scholar
- Munk, O. (1971) On the occurrence of two lens muscles within each eye of some teleosts. Vidensk. Meddr Dansk Naturh. Foren., 134, 7–19.Google Scholar
- Munk, O. (1973) Early notions of dynamic accommodatory devices in teleosts. Vidensk. Meddr Dansk Naturh. Foren., 136, 7–28.Google Scholar
- Nicol, J.A.C. (1963) Some aspects of photoreception and vision in fishes. Adv. Mar. Biol., 1, 171–201.CrossRefGoogle Scholar
- Northmore, D.P.M. and Dvorak, C.A. (1979) Contrast sensitivity and acuity of the goldfish. Vision Res., 19, 225–61.CrossRefGoogle Scholar
- Nuboer, J.F.W. and Genderen-Takken, H. Van (1978) The artefact of retinoscopy. Vision Res., 18, 1091–6.CrossRefGoogle Scholar
- Orlov, O.Y. and Gamburtzeva, A.G. (1975) Dynamics of corneal colorations in fish, Hexagrammos octagrammus. Biofizika, 21, 362–5.Google Scholar
- Otten, E. (1981) Vision during growth of a generalized Haplochromis species: H. elegans Trewavas 1933 (Pisces, Cichlidae). Neth. J. Zool., 31, 650–700.CrossRefGoogle Scholar
- Pumphrey, R.J. (1961) Concerning vision, in The Cell and Organism (ed. J.A. Ramsey ), Cambridge University Press, Cambridge, pp. 193–208.Google Scholar
- Sadler, J.D. (1973) The focal length of the fish eye lens and visual acuity. Vision Res., 13, 417–23.CrossRefGoogle Scholar
- Scholes, J.H. (1976) Neuronal connections and cellular arrangement in the fish retina, in Neural Principles in Vision (eds F. Zettler and R. Weiler ), Springer-Verlag, Berlin, pp. 63–93.Google Scholar
- Scroczynski, S. (1975a) Die sphaerische Aberration der Augenlinse der Regenbogen-forelle (Salmo gairdnerii Rich.) Zool. Jb., Abt. Allgemeine Zool. Physiol. Tiere, 79, 204–12.Google Scholar
- Scroczynski, S. (1975b) Die sphaerische Aberration der Augenlise des Hechts (Esox lucius L.), Zool. Jb., Abt. Allgemeine Zool. Physiol. Tiere, 79, 547–58.Google Scholar
- Scroczynski, S. (1977) Spherical aberration of crystalline lens in the roach Rutilis rutilis L. J. Comp. Physiol., A, 121, 135–44.Google Scholar
- Scroczynski, S. (1979) Methodischer Beitrag zur Messung der Abberationen der Kristall-Linsen der Fische. Teile I und II. Mikroskopie (Wien), 35, 189–201 and 241–57.Google Scholar
- Sivak, J.G. (1973) Interrelation of feeding behaviour and accommodative lens movements in some species of North American freshwater fishes. J. Fish. Res. Bd Can., 30, 1141–6.CrossRefGoogle Scholar
- Sivak, J.G. (1982) Optical characteristics of the eye of the flounder. J. Comp. Physiol., A, 146, 345–9.Google Scholar
- Sivak, J.G. and Bobier, W.R. (1978) Chromatic aberration of the fish eye and its effect on refractive state. Vision Res., 18, 453–5.CrossRefGoogle Scholar
- Tamura, T. (1957) A study of visual perception in fish, especially on resolving power and accommodation. Bull. Jap. Soc. Scient. Fish., 22, 537–57.Google Scholar
- Tansley, K. (1965) Vision in Vertebrates, Chapman and Hall, London.Google Scholar
- Vakkur, G.J. and Bishop, P.O. (1963) The schematic eye of the cat. Vision Res., 3, 357–82.CrossRefGoogle Scholar
- Wallace, W.C. (1834) Discovery of a muscle in the eye of fishes. Am. J. Sci. Arts, 26, 394.Google Scholar
- Wallman, J., Gottlieb, M.D., Rajaram, V. and Fugate-Wentzek, L.A. (1987) Local retinal regions control local eye growth and myopia. Science, N.Y., 237, 73–7.CrossRefGoogle Scholar
- Walls, G.L. (1942) The Vertebrate Eye and its Adaptive Radiation, Facsimile edition, Hafner, New York [ 1967 ].Google Scholar
- Westheimer, G. (1968) The eye, in Medical Physiology, 12th edn (ed. V.B. Mountcastle ), Mosby, St. Louis, Missouri, pp. 1532–53.Google Scholar
- Young, T. (1801) On the mechanism of the eye. Philos. Trans. Royal Soc., 92, 23–88.CrossRefGoogle Scholar