Advertisement

The optical system of fishes

  • Russell D. Femald

Abstract

How fish see has probably puzzled anyone who has ever opened their eyes underwater whilst swimming to discover a shimmering unfocused world. It has certainly intrigued both scientists and fishermen, because fish appear to see quite well indeed. The eyes of fishes, like those of other familiar animals, have evolved adaptations responsible for two main visual functions: (1) to collect light, and (2)to form a focused image for analysis by the retina. In fish, the additional challenge of seeing underwater has resulted in novel solutions to these fundamental problems. This chapter will discuss two major features of fish visual systems: optics, which is the collection of light and formation of an image by the lens, and accommodation, which is the focusing of images on the retina.

Keywords

Spherical Aberration Chromatic Aberration Spherical Lens Retinal Illuminance Lens Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelrod, D., Lerner, D. and Sands, P.J. (1988) Refractive index within the lens of a goldfish eye, determined from the paths of thin laser beams. Vision Res., 28, 57–65.Google Scholar
  2. Beer, T. (1894) Die Accommodation des Fischauges. Pflügers Arch. ges. Physiol., 58, 523–650.CrossRefGoogle Scholar
  3. Brewster, D. (1816) On the structure of the crystalline lens in fishes and quadrupeds, as ascertained by its action on polarized light. Phil. Trans. R. Soc., 311–17.Google Scholar
  4. Charman, W.N. and Tucker, J. (1973) The optical system of the goldfish eye. Vision Res., 13, 1–8.CrossRefGoogle Scholar
  5. Eberle, H. (1968) Zapfenbau, Zapfenlaenge und Chromatische Aberration im Auge von Lebistes reticulatus (Peters Guppy). Zool. Jb., Abt. Allgemeine Zool. Physiol. Tiere, 74, 121–54.Google Scholar
  6. Fagerholm, P., Philipson, B.T. and Lindstroem, B. (1981) Normal human lens — the distribution of protein. Expl Eye Res., 33, 615–20.CrossRefGoogle Scholar
  7. Fernald, R.D. (1985) Growth of the teleost eye: novel solutions to complex constraints. Environ. Biol. Fishes, 13, 113–23.CrossRefGoogle Scholar
  8. Fernald, R.D. (1988) Aquatic adaptations in fish eyes, in Sensory Biology of Aquatic Animals (eds J. Atema, R.R. Fay, A.N. Popper and W.N. Tavolga ), Springer- Verlag, Berlin, pp. 435–66.Google Scholar
  9. Fernald, R.D. and Wright, S.E. (1983) Maintenance of optical quality during crystalline lens growth. Nature, Lond., 301, 618–20.CrossRefGoogle Scholar
  10. Fernald, R.D. and Wright, S.E. (1985a) Growth of the visual system of the African cichlid fish, Haplochromis burtoni: optics. Vision Res., 25, 155–61.Google Scholar
  11. Fernald, R.D. and Wright, S.E. (1985b) Growth of the visual system of the African cichlid fish, Haplochromis burtoni: accommodation. Vision Res., 25, 163–70.CrossRefGoogle Scholar
  12. Fincham, W.H.A. (1959) Optics, Hatton Press, London.Google Scholar
  13. Fletcher, A., Murphey, T. and Young, A. (1954) Solutions of two optical problems. Proc. R. Soc., A, 223, 216–25.Google Scholar
  14. Fredrikson, R.D. (1973) On the retinal diverticula in the tubular-eyed opisthoproctid deep-sea fishes Macropinna microstoma and Dolichopteryx longipes. Vidensk. Meddr Dansk Naturh. Foren., 136, 233–44.Google Scholar
  15. Hueter, R.E. and Gruber, S.H. (1980) Retinoscopy of the aquatic eye. Vision Res., 20, 197–200.CrossRefGoogle Scholar
  16. Kimura, K. and Tamura, T. (1966) On the direction of the lens movement in the visual accommodation of teleostean eye. Bull. Jap. Soc. Scient. Fish., 32, 112–16.Google Scholar
  17. Land, M.F. (1981) Optics and vision in invertebrates, in Handbook of Sensory Physiology VII/6B (ed. H.J. Autrum ), Springer-Verlag, Berlin, pp. 471–592.Google Scholar
  18. Lockett, N.A. (1977) Adaptations to the deep-sea environment, in Handbook of Sensory Physiology, VII/5 (ed. R. Crescitelli ), Springer-Verlag, Berlin, pp. 67–192.Google Scholar
  19. Luneberg, R.K. (1944) Mathematical Theory of Optics, Brown University Press, Providence, RI, pp. 208–13.Google Scholar
  20. Lythgoe, J.N. (1979) The Ecology of Vision, Clarendon Press, Oxford.Google Scholar
  21. Marshall, N.B. (1971) Explorations in the Life of Fishes, Harvard University Press, Cambridge, Mass.Google Scholar
  22. Martin, G.R. (1977) Absolute visual threshold and scotopic spectral sensitivity in the tawny owl, Strix aluco. Nature, Lond., 268, 636–8.CrossRefGoogle Scholar
  23. Matthiessen, L. (1882) Über die Beziehungen, Welche Zwischen dem Brechungsindex des Kernzentrums der Krystallinse und den Dimensionen des Auges Bestehen. Pflügers Arch. ges. Physiol., 27, 510–23.CrossRefGoogle Scholar
  24. Matthiessen, L. (1886) Über den physikalisch-optischen Bau der Auges des Cetacean und der Fische. Pflügers Arch. ges. Physiol., 38, 521–8.CrossRefGoogle Scholar
  25. Maxwell, J.C. (1854) Some solutions of problems. Cambridge and Dublin Mathematical Journal, 8, 188–95.Google Scholar
  26. Moreland, J.D. and Lythgoe, J.N. (1968) Yellow corneas in fishes. Vision Res., 8, 1377–80.CrossRefGoogle Scholar
  27. Munk, O. (1966) Ocular anatomy of some deep-sea teleosts. Dana Rep. Carlsberg Found., 70, 1–62.Google Scholar
  28. Munk, O. (1971) On the occurrence of two lens muscles within each eye of some teleosts. Vidensk. Meddr Dansk Naturh. Foren., 134, 7–19.Google Scholar
  29. Munk, O. (1973) Early notions of dynamic accommodatory devices in teleosts. Vidensk. Meddr Dansk Naturh. Foren., 136, 7–28.Google Scholar
  30. Nicol, J.A.C. (1963) Some aspects of photoreception and vision in fishes. Adv. Mar. Biol., 1, 171–201.CrossRefGoogle Scholar
  31. Northmore, D.P.M. and Dvorak, C.A. (1979) Contrast sensitivity and acuity of the goldfish. Vision Res., 19, 225–61.CrossRefGoogle Scholar
  32. Nuboer, J.F.W. and Genderen-Takken, H. Van (1978) The artefact of retinoscopy. Vision Res., 18, 1091–6.CrossRefGoogle Scholar
  33. Orlov, O.Y. and Gamburtzeva, A.G. (1975) Dynamics of corneal colorations in fish, Hexagrammos octagrammus. Biofizika, 21, 362–5.Google Scholar
  34. Otten, E. (1981) Vision during growth of a generalized Haplochromis species: H. elegans Trewavas 1933 (Pisces, Cichlidae). Neth. J. Zool., 31, 650–700.CrossRefGoogle Scholar
  35. Pumphrey, R.J. (1961) Concerning vision, in The Cell and Organism (ed. J.A. Ramsey ), Cambridge University Press, Cambridge, pp. 193–208.Google Scholar
  36. Sadler, J.D. (1973) The focal length of the fish eye lens and visual acuity. Vision Res., 13, 417–23.CrossRefGoogle Scholar
  37. Scholes, J.H. (1976) Neuronal connections and cellular arrangement in the fish retina, in Neural Principles in Vision (eds F. Zettler and R. Weiler ), Springer-Verlag, Berlin, pp. 63–93.Google Scholar
  38. Scroczynski, S. (1975a) Die sphaerische Aberration der Augenlinse der Regenbogen-forelle (Salmo gairdnerii Rich.) Zool. Jb., Abt. Allgemeine Zool. Physiol. Tiere, 79, 204–12.Google Scholar
  39. Scroczynski, S. (1975b) Die sphaerische Aberration der Augenlise des Hechts (Esox lucius L.), Zool. Jb., Abt. Allgemeine Zool. Physiol. Tiere, 79, 547–58.Google Scholar
  40. Scroczynski, S. (1977) Spherical aberration of crystalline lens in the roach Rutilis rutilis L. J. Comp. Physiol., A, 121, 135–44.Google Scholar
  41. Scroczynski, S. (1979) Methodischer Beitrag zur Messung der Abberationen der Kristall-Linsen der Fische. Teile I und II. Mikroskopie (Wien), 35, 189–201 and 241–57.Google Scholar
  42. Sivak, J.G. (1973) Interrelation of feeding behaviour and accommodative lens movements in some species of North American freshwater fishes. J. Fish. Res. Bd Can., 30, 1141–6.CrossRefGoogle Scholar
  43. Sivak, J.G. (1982) Optical characteristics of the eye of the flounder. J. Comp. Physiol., A, 146, 345–9.Google Scholar
  44. Sivak, J.G. and Bobier, W.R. (1978) Chromatic aberration of the fish eye and its effect on refractive state. Vision Res., 18, 453–5.CrossRefGoogle Scholar
  45. Tamura, T. (1957) A study of visual perception in fish, especially on resolving power and accommodation. Bull. Jap. Soc. Scient. Fish., 22, 537–57.Google Scholar
  46. Tansley, K. (1965) Vision in Vertebrates, Chapman and Hall, London.Google Scholar
  47. Vakkur, G.J. and Bishop, P.O. (1963) The schematic eye of the cat. Vision Res., 3, 357–82.CrossRefGoogle Scholar
  48. Wallace, W.C. (1834) Discovery of a muscle in the eye of fishes. Am. J. Sci. Arts, 26, 394.Google Scholar
  49. Wallman, J., Gottlieb, M.D., Rajaram, V. and Fugate-Wentzek, L.A. (1987) Local retinal regions control local eye growth and myopia. Science, N.Y., 237, 73–7.CrossRefGoogle Scholar
  50. Walls, G.L. (1942) The Vertebrate Eye and its Adaptive Radiation, Facsimile edition, Hafner, New York [ 1967 ].Google Scholar
  51. Westheimer, G. (1968) The eye, in Medical Physiology, 12th edn (ed. V.B. Mountcastle ), Mosby, St. Louis, Missouri, pp. 1532–53.Google Scholar
  52. Young, T. (1801) On the mechanism of the eye. Philos. Trans. Royal Soc., 92, 23–88.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1990

Authors and Affiliations

  • Russell D. Femald

There are no affiliations available

Personalised recommendations