Early Stages of Oxygen Precipitation in Silicon pp 179-195 | Cite as
Hydrogen - Oxygen Interactions in Silicon
Abstract
Hydrogen plays many roles in crystalline Si, the best known of which are probably the shallow-dopant passivation reactions. But hydrogen also activates electrically inactive impurities, passivates many deep-level defects and some deep-level impurities, and creates its own electrically and optically active centers. Hydrogen also interacts with the A-center, and passivates O-related thermal donors (TDs) at low temperatures. However, the most exotic of all the reactions involving hydrogen is its ability to enhances the formation rate of O-related TDs in the 300 – 450 °C range. Under some conditions, H becomes a component of TDs. None of the microscopic interactions involving H and 0 are understood. However, various pieces of the puzzle are becoming available from experiment as well as theory. This paper summarizes the experimental and theoretical work on H - 0 interactions, with emphasis on the issue of H-enhanced diffusion of interstitial 0. Preliminary results of molecular dynamics simulations are also presented.
Keywords
Activation Energy Molecular Dynamic Simulation Metastable State Host Atom Capture RadiusPreview
Unable to display preview. Download preview PDF.
References
- 1.Estreicher S.K. (1995), Mat. Sci. Engr. Reports 14, 319.CrossRefGoogle Scholar
- 2.Pearton S.J., Corbett J.W., and Stavola M. (1992), ‘Hydrogen in Crystalline Semiconductors’, (Springer-Verlag, New York).Google Scholar
- 3.Seager C.H. and Anderson R.A. (1990), Sol. St. Com. 76, 285; Johnson N.M. and Herring C. (1992), Phy. Rev. B 45, 11379.Google Scholar
- 4.Patterson B.D., Holzschuh E., Kündig W., Meier P.F., Odermatt W., Sellschop J.P.F., and Stemmet M.C. (1984), Hyp. Int. 17–19, 605.ADSCrossRefGoogle Scholar
- 5.Westhauser E., Albert E., Hamma M., Recknagel E., Weidinger A., and Moser P. (1986), Hyp. Int. 32, 589.ADSCrossRefGoogle Scholar
- 6.Estreicher S.K. and Marie D.M. (1993), Phys. Rev. Lett. 70, 3963.ADSCrossRefGoogle Scholar
- 7.Holm B., Bonde Nielsen K., and Bech Nielsen B. (1991), Phys. Rev. Lett. 66, 2360.ADSCrossRefGoogle Scholar
- 8.Kreitzman S.R., Hitti B., Lichti R.L., Estle T.L., and Chow K.H. (1995), Phys. Rev. B 51, 13117.ADSCrossRefGoogle Scholar
- 9.Johnson N.M., Herring C., and Van de Walle C.G. (1994), Phys. Rev. Lett. 73, 130.ADSCrossRefGoogle Scholar
- 10.Estle T.L. and Lichti R.L. (1995), private communication.Google Scholar
- 11.See the Comment on the above paper by Seager C.H., Anderson R.A., and Estreicher S.K. (1995), Phys. Rev. Lett. 74, 4565.ADSCrossRefGoogle Scholar
- 12.Seager C.H. and Anderson R.A. (1996), submitted to Appl. Phys. Lett.Google Scholar
- 13.Holbech J.D., Bech Nielsen B., Jones R., Sitch P., and Öberg S. (1993), Phys. Rev. Lett. 71, 875.ADSCrossRefGoogle Scholar
- 14.Oxygen in Silicon, ed. F. Shimura (1994), Semic. and Semimet. 42 (Academic, NY).Google Scholar
- 15.Deák P, Snyder L.C., and Corbett J.W. (1992), Phys. Rev. B 45, 11612.ADSCrossRefGoogle Scholar
- 16.Newman R.C. and Jones R. (1994), in Oxygen in Silicon, Ref. [14]Google Scholar
- 17.McQuaid S.A., Binns M.J., Londos C.A., Tucker J.H., Brown A.R., and Newman R.C. (1995), J. Appl. Phys. 77, 1427.ADSCrossRefGoogle Scholar
- 18.Corbett J.W., Deák P., Lindström J.L., Roth J.M., and Snyder L.C. (1989), Mat. Sci. Forum 38–42, 579.CrossRefGoogle Scholar
- 19.Gösele U. and Tan T.Y. (1982), Appl. Phys. A 28, 79.ADSCrossRefGoogle Scholar
- 20.Roberson M.A., Estreicher S.K., and Chu C.H. (1993), J. Phys.: Condens. Matter 5, 8943.ADSCrossRefGoogle Scholar
- 21.Artacho E. and Ynduráin F. (1989), Sol. St. Com. 72, 393.ADSCrossRefGoogle Scholar
- 22.Gutsev G.L., Myakenkaya G.S., Frolov V.V., and Glazman V.B. (1989), Phys. Stat. Sol. (b) 153, 659.ADSCrossRefGoogle Scholar
- 23.Johnson N.M. and Hahn S.K. (1986), Appl. Phys. Lett. 48, 709.ADSCrossRefGoogle Scholar
- 24.Bohne D.I. and Weber J. (1993), Phys. Rev. B 47, 4037 amd (1994), Mat. Sci. Forum 143–147, 879.Google Scholar
- 25.Martynov Yu V., Gregorkiewicz T., and Ammerlaan C.A.J. (1995), Phys. Rev. Lett. 74, 2030.ADSCrossRefGoogle Scholar
- 26.McQuaid S.A., Newman R.C., and Lightowlers E.C. (1994), Semic. Sci. Technol. 9, 1736.ADSCrossRefGoogle Scholar
- 27.Lightowlers E.C., Newman R.C., and Tucker J.H. (1994), Semic. Sci. Technol. 9, 1370.ADSCrossRefGoogle Scholar
- 28.Fuller C.S. and Logan R.A. (1957), J. Appl. Phys. 28, 1427.ADSCrossRefGoogle Scholar
- 29.Qi M.W., Bai G.R., Shi T.S., and Xie L.M. (1985), Mater. Lett. 3, 467.CrossRefGoogle Scholar
- 30.Patterson B.D. (1988), Rev. Mod. Phys. 60, 69 (see pages 110 and 131).ADSCrossRefGoogle Scholar
- 31.Patterson B.D., Bosshard A., Straumann U., Truöl P., Wüest A., and Wichert Th. (1984), Phys. Rev. Lett. 52, 938.ADSCrossRefGoogle Scholar
- 32.Brown A.R., Claybourn M., Murray R., Nandhra P.S., Newman R.C., and Tucker J.H. (1988), Semic. Sci. Technol. 3, 591.ADSCrossRefGoogle Scholar
- 33.Stein H.J. and Hahn S.K. (1990) Appl. Phys. Lett. 56, 63.ADSCrossRefGoogle Scholar
- 34.Zhong L. and Shimura F. (1993), J. Appl. Phys. 73, 707.ADSCrossRefGoogle Scholar
- 35.Hara A., Aoki M., Fukuda T., and Ohsawa A. (1993), J. Appl. Phys. 74, 913.ADSCrossRefGoogle Scholar
- 36.Stein H.J. and Hahn S.K. (1994), Appl. Phys. Lett. 75, 3477.Google Scholar
- 37.Stein H.J. and Hahn S.K. (1995), J. Electrochem. Soc. 142, 1242.CrossRefGoogle Scholar
- 38.Stein H.J. (1994), private communication.Google Scholar
- 39.Estreicher S.K. (1990), Phys. Rev. B 41, 9886.ADSCrossRefGoogle Scholar
- 40.Jones R., Öberg S., and Umerski A. (1992), Mat. Sci. Forum 83–87, 551. Jones R. (1995), Phil. Trans. R. Soc. Lond. A 350, 189.Google Scholar
- 41.Buda F., Chiarotti G.L., Car R., and Parrinello M. (1989), Phys. Rev. Lett. 63, 294.ADSCrossRefGoogle Scholar
- 42.Boucher D.E. and DeLeo G.G. (1994), Phys. Rev. B 50, 5247.ADSCrossRefGoogle Scholar
- 43.Panzarini G. and Colombo L. (1994), Phys. Rev. Lett. 73, 1636.ADSCrossRefGoogle Scholar
- 44.Park Y.K., Estreicher S.K., Myles C.W., and Fedders P.A. (1995), Phys. Rev. B 52, 1718.ADSCrossRefGoogle Scholar
- 45.Watkins G.D. (1986), in Deep Centers in Semiconductors, ed. S.T. Pantelides (Gordon and Breach, New York), p. 147.Google Scholar
- 46.Bennett C.H., Molecular Dynamics and Transition State Theory: the Simulation of Infrequent Events, in “Algorithms for Chemical Computations”, p. 63.Google Scholar
- 47.Sankey O.F. and Niklewski D.J. (1989), Phys. Rev. B 40, 3979.ADSCrossRefGoogle Scholar
- 48.Sankey O.F., Niklewski D.J., Drabold D.A., and Dow J.D. (1990), Phys. Rev. B 41, 12750.ADSCrossRefGoogle Scholar
- 49.Yang S.H., Drabold D.A., and Adams G.B. (1993), Phys. Rev. B 48, 5261.ADSCrossRefGoogle Scholar
- 50.Drabold D.A., Fedders P.A., Klemm S., and Sankey O.F. (1991), Phys. Rev. Lett. 67, 2179; Drabold D.A., Wang R., Klemm S., and Sankey O.F. (1991), Phys. Rev. B 43, 5132.Google Scholar
- 51.Alfonso D.R., Yang S.H., and Drabold D.A. (1994), Phys. Rev. B 50, 15369.ADSCrossRefGoogle Scholar
- 52.Harris F.J. (1978), Proc. IEEE 66, 51.ADSCrossRefGoogle Scholar
- 53.Hamann D.R., Schlüter M., and Chiang C. (1979), Phys. Rev. Lett. 43, 1494; Bachelet G.B., Hamann D.R., and Schlüter M. (1982), Phys. Rev. B 26, 4199.Google Scholar
- 54.Ceperley D.M. and Adler B.J. (1980), Phys. Rev. Lett. 45, 566.ADSCrossRefGoogle Scholar
- 55.Perdew S. and Zunger A. (1981), Phys. Rev. B 23, 5048.ADSCrossRefGoogle Scholar
- 56.Gear C.W. (1966), ANL Report #7126, Argonne Nat. Lab.; C.W. Gear (1971), Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, NJ), Chapt. 9.Google Scholar
- 57.Car R. and Parrinello M. (1985), Phys. Rev. Lett. 55, 2471.ADSCrossRefGoogle Scholar
- 58.Park Y.K. and Myles C.W. (1995), Phys. Rev. B 51, 1671.ADSCrossRefGoogle Scholar
- 59.Bech Nielsen B., Bonde Nielsen K., and Byberg J.P. (1994), Mater. Sci. Forum 143-17, 909.CrossRefGoogle Scholar
- 60.Bonde Nielsen K. and Bech Nielsen B. (1995), private communication.Google Scholar