Hydrogen - Oxygen Interactions in Silicon

  • Stefan K. Estreicher
  • Young K. Park
  • Peter A. Fedders
Part of the NATO ASI Series book series (ASHT, volume 17)

Abstract

Hydrogen plays many roles in crystalline Si, the best known of which are probably the shallow-dopant passivation reactions. But hydrogen also activates electrically inactive impurities, passivates many deep-level defects and some deep-level impurities, and creates its own electrically and optically active centers. Hydrogen also interacts with the A-center, and passivates O-related thermal donors (TDs) at low temperatures. However, the most exotic of all the reactions involving hydrogen is its ability to enhances the formation rate of O-related TDs in the 300 – 450 °C range. Under some conditions, H becomes a component of TDs. None of the microscopic interactions involving H and 0 are understood. However, various pieces of the puzzle are becoming available from experiment as well as theory. This paper summarizes the experimental and theoretical work on H - 0 interactions, with emphasis on the issue of H-enhanced diffusion of interstitial 0. Preliminary results of molecular dynamics simulations are also presented.

Keywords

Activation Energy Molecular Dynamic Simulation Metastable State Host Atom Capture Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Estreicher S.K. (1995), Mat. Sci. Engr. Reports 14, 319.CrossRefGoogle Scholar
  2. 2.
    Pearton S.J., Corbett J.W., and Stavola M. (1992), ‘Hydrogen in Crystalline Semiconductors’, (Springer-Verlag, New York).Google Scholar
  3. 3.
    Seager C.H. and Anderson R.A. (1990), Sol. St. Com. 76, 285; Johnson N.M. and Herring C. (1992), Phy. Rev. B 45, 11379.Google Scholar
  4. 4.
    Patterson B.D., Holzschuh E., Kündig W., Meier P.F., Odermatt W., Sellschop J.P.F., and Stemmet M.C. (1984), Hyp. Int. 17–19, 605.ADSCrossRefGoogle Scholar
  5. 5.
    Westhauser E., Albert E., Hamma M., Recknagel E., Weidinger A., and Moser P. (1986), Hyp. Int. 32, 589.ADSCrossRefGoogle Scholar
  6. 6.
    Estreicher S.K. and Marie D.M. (1993), Phys. Rev. Lett. 70, 3963.ADSCrossRefGoogle Scholar
  7. 7.
    Holm B., Bonde Nielsen K., and Bech Nielsen B. (1991), Phys. Rev. Lett. 66, 2360.ADSCrossRefGoogle Scholar
  8. 8.
    Kreitzman S.R., Hitti B., Lichti R.L., Estle T.L., and Chow K.H. (1995), Phys. Rev. B 51, 13117.ADSCrossRefGoogle Scholar
  9. 9.
    Johnson N.M., Herring C., and Van de Walle C.G. (1994), Phys. Rev. Lett. 73, 130.ADSCrossRefGoogle Scholar
  10. 10.
    Estle T.L. and Lichti R.L. (1995), private communication.Google Scholar
  11. 11.
    See the Comment on the above paper by Seager C.H., Anderson R.A., and Estreicher S.K. (1995), Phys. Rev. Lett. 74, 4565.ADSCrossRefGoogle Scholar
  12. 12.
    Seager C.H. and Anderson R.A. (1996), submitted to Appl. Phys. Lett.Google Scholar
  13. 13.
    Holbech J.D., Bech Nielsen B., Jones R., Sitch P., and Öberg S. (1993), Phys. Rev. Lett. 71, 875.ADSCrossRefGoogle Scholar
  14. 14.
    Oxygen in Silicon, ed. F. Shimura (1994), Semic. and Semimet. 42 (Academic, NY).Google Scholar
  15. 15.
    Deák P, Snyder L.C., and Corbett J.W. (1992), Phys. Rev. B 45, 11612.ADSCrossRefGoogle Scholar
  16. 16.
    Newman R.C. and Jones R. (1994), in Oxygen in Silicon, Ref. [14]Google Scholar
  17. 17.
    McQuaid S.A., Binns M.J., Londos C.A., Tucker J.H., Brown A.R., and Newman R.C. (1995), J. Appl. Phys. 77, 1427.ADSCrossRefGoogle Scholar
  18. 18.
    Corbett J.W., Deák P., Lindström J.L., Roth J.M., and Snyder L.C. (1989), Mat. Sci. Forum 38–42, 579.CrossRefGoogle Scholar
  19. 19.
    Gösele U. and Tan T.Y. (1982), Appl. Phys. A 28, 79.ADSCrossRefGoogle Scholar
  20. 20.
    Roberson M.A., Estreicher S.K., and Chu C.H. (1993), J. Phys.: Condens. Matter 5, 8943.ADSCrossRefGoogle Scholar
  21. 21.
    Artacho E. and Ynduráin F. (1989), Sol. St. Com. 72, 393.ADSCrossRefGoogle Scholar
  22. 22.
    Gutsev G.L., Myakenkaya G.S., Frolov V.V., and Glazman V.B. (1989), Phys. Stat. Sol. (b) 153, 659.ADSCrossRefGoogle Scholar
  23. 23.
    Johnson N.M. and Hahn S.K. (1986), Appl. Phys. Lett. 48, 709.ADSCrossRefGoogle Scholar
  24. 24.
    Bohne D.I. and Weber J. (1993), Phys. Rev. B 47, 4037 amd (1994), Mat. Sci. Forum 143–147, 879.Google Scholar
  25. 25.
    Martynov Yu V., Gregorkiewicz T., and Ammerlaan C.A.J. (1995), Phys. Rev. Lett. 74, 2030.ADSCrossRefGoogle Scholar
  26. 26.
    McQuaid S.A., Newman R.C., and Lightowlers E.C. (1994), Semic. Sci. Technol. 9, 1736.ADSCrossRefGoogle Scholar
  27. 27.
    Lightowlers E.C., Newman R.C., and Tucker J.H. (1994), Semic. Sci. Technol. 9, 1370.ADSCrossRefGoogle Scholar
  28. 28.
    Fuller C.S. and Logan R.A. (1957), J. Appl. Phys. 28, 1427.ADSCrossRefGoogle Scholar
  29. 29.
    Qi M.W., Bai G.R., Shi T.S., and Xie L.M. (1985), Mater. Lett. 3, 467.CrossRefGoogle Scholar
  30. 30.
    Patterson B.D. (1988), Rev. Mod. Phys. 60, 69 (see pages 110 and 131).ADSCrossRefGoogle Scholar
  31. 31.
    Patterson B.D., Bosshard A., Straumann U., Truöl P., Wüest A., and Wichert Th. (1984), Phys. Rev. Lett. 52, 938.ADSCrossRefGoogle Scholar
  32. 32.
    Brown A.R., Claybourn M., Murray R., Nandhra P.S., Newman R.C., and Tucker J.H. (1988), Semic. Sci. Technol. 3, 591.ADSCrossRefGoogle Scholar
  33. 33.
    Stein H.J. and Hahn S.K. (1990) Appl. Phys. Lett. 56, 63.ADSCrossRefGoogle Scholar
  34. 34.
    Zhong L. and Shimura F. (1993), J. Appl. Phys. 73, 707.ADSCrossRefGoogle Scholar
  35. 35.
    Hara A., Aoki M., Fukuda T., and Ohsawa A. (1993), J. Appl. Phys. 74, 913.ADSCrossRefGoogle Scholar
  36. 36.
    Stein H.J. and Hahn S.K. (1994), Appl. Phys. Lett. 75, 3477.Google Scholar
  37. 37.
    Stein H.J. and Hahn S.K. (1995), J. Electrochem. Soc. 142, 1242.CrossRefGoogle Scholar
  38. 38.
    Stein H.J. (1994), private communication.Google Scholar
  39. 39.
    Estreicher S.K. (1990), Phys. Rev. B 41, 9886.ADSCrossRefGoogle Scholar
  40. 40.
    Jones R., Öberg S., and Umerski A. (1992), Mat. Sci. Forum 83–87, 551. Jones R. (1995), Phil. Trans. R. Soc. Lond. A 350, 189.Google Scholar
  41. 41.
    Buda F., Chiarotti G.L., Car R., and Parrinello M. (1989), Phys. Rev. Lett. 63, 294.ADSCrossRefGoogle Scholar
  42. 42.
    Boucher D.E. and DeLeo G.G. (1994), Phys. Rev. B 50, 5247.ADSCrossRefGoogle Scholar
  43. 43.
    Panzarini G. and Colombo L. (1994), Phys. Rev. Lett. 73, 1636.ADSCrossRefGoogle Scholar
  44. 44.
    Park Y.K., Estreicher S.K., Myles C.W., and Fedders P.A. (1995), Phys. Rev. B 52, 1718.ADSCrossRefGoogle Scholar
  45. 45.
    Watkins G.D. (1986), in Deep Centers in Semiconductors, ed. S.T. Pantelides (Gordon and Breach, New York), p. 147.Google Scholar
  46. 46.
    Bennett C.H., Molecular Dynamics and Transition State Theory: the Simulation of Infrequent Events, in “Algorithms for Chemical Computations”, p. 63.Google Scholar
  47. 47.
    Sankey O.F. and Niklewski D.J. (1989), Phys. Rev. B 40, 3979.ADSCrossRefGoogle Scholar
  48. 48.
    Sankey O.F., Niklewski D.J., Drabold D.A., and Dow J.D. (1990), Phys. Rev. B 41, 12750.ADSCrossRefGoogle Scholar
  49. 49.
    Yang S.H., Drabold D.A., and Adams G.B. (1993), Phys. Rev. B 48, 5261.ADSCrossRefGoogle Scholar
  50. 50.
    Drabold D.A., Fedders P.A., Klemm S., and Sankey O.F. (1991), Phys. Rev. Lett. 67, 2179; Drabold D.A., Wang R., Klemm S., and Sankey O.F. (1991), Phys. Rev. B 43, 5132.Google Scholar
  51. 51.
    Alfonso D.R., Yang S.H., and Drabold D.A. (1994), Phys. Rev. B 50, 15369.ADSCrossRefGoogle Scholar
  52. 52.
    Harris F.J. (1978), Proc. IEEE 66, 51.ADSCrossRefGoogle Scholar
  53. 53.
    Hamann D.R., Schlüter M., and Chiang C. (1979), Phys. Rev. Lett. 43, 1494; Bachelet G.B., Hamann D.R., and Schlüter M. (1982), Phys. Rev. B 26, 4199.Google Scholar
  54. 54.
    Ceperley D.M. and Adler B.J. (1980), Phys. Rev. Lett. 45, 566.ADSCrossRefGoogle Scholar
  55. 55.
    Perdew S. and Zunger A. (1981), Phys. Rev. B 23, 5048.ADSCrossRefGoogle Scholar
  56. 56.
    Gear C.W. (1966), ANL Report #7126, Argonne Nat. Lab.; C.W. Gear (1971), Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, NJ), Chapt. 9.Google Scholar
  57. 57.
    Car R. and Parrinello M. (1985), Phys. Rev. Lett. 55, 2471.ADSCrossRefGoogle Scholar
  58. 58.
    Park Y.K. and Myles C.W. (1995), Phys. Rev. B 51, 1671.ADSCrossRefGoogle Scholar
  59. 59.
    Bech Nielsen B., Bonde Nielsen K., and Byberg J.P. (1994), Mater. Sci. Forum 143-17, 909.CrossRefGoogle Scholar
  60. 60.
    Bonde Nielsen K. and Bech Nielsen B. (1995), private communication.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Stefan K. Estreicher
    • 1
  • Young K. Park
    • 2
  • Peter A. Fedders
    • 3
  1. 1.Physics Dept.Texas Tech UniversityLubbockUSA
  2. 2.Physics Dept.University of CaliforniaIrvineUSA
  3. 3.Physics Dept.Washington UniversitySt. LouisUSA

Personalised recommendations