Unimolecular Micelles of Hydrophobically Modified Polyelectrolytes

  • Yotaro Morishima
Part of the NATO ASI Series book series (NSSE, volume 327)


Water-soluble hydrophobically associating polymers have been the subject of extensive studies over the past decade because of fundamental interests in their molecular self-organization phenomena in relevance to biopolymer systems and also in their nanoscopic molecular architectures in connection to materials science. This class of polymers is also the focus of industrial research because of its utility in a variety of applications such as paints, coatings, drugs, cosmetics, personal care goods, flocculation, colloid stabilization, oil field formulation, and rheology modification.1,2


Dynamic Light Scattering Static Light Scattering Hydrophobic Cluster Hydrophobic Association Monomer Fluorescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schulz, D.N., Bock, J., and Valint Jr, P.L. (1994) Synthesis and characterization of hydrophobically associationg water-soluble polymers, In P. Dub, J. Bock, RM. Davies, DN., Schulz, and C. Thies (eds.),Macromolecular Complexes -in: Chemistry and Biology, Springer-Verlag, Berlin Heidelberg, p. 3–13Google Scholar
  2. 2.
    Varadaraj, R., Branham, K.D., McCormick, C.L., and Bock, J. (1994) A n a l y s i s of hydrophobically associating copolymers utilizing spectroscopic probes and. labels, in P. Dubin, J. Bock, R.M. Davies, D.N. Schulz, and C. Thies (eds.)Macromolecular Complexes in Chemistry and Biology, Springer-Verlag, Berlin (Heidelberg) p (153)Google Scholar
  3. 3.
    Strauss, U.P. and Jackson, E.G. (1951)J. Polym. Sci.6, 649CrossRefGoogle Scholar
  4. 4.
    Dubin, P. and Strauss, U.P. (1967)J. Phys. Chem. 71, 2757CrossRefGoogle Scholar
  5. 5.
    Dubin, P. and Strauss, U.P. (1970)J. Phys. Chem. 71, 2842CrossRefGoogle Scholar
  6. 6.
    Kotin, L, and Nagasawa, M. (1962)J. Chem. Phys. 36, 873CrossRefGoogle Scholar
  7. 7.
    Nagasawa, M., Murase, T., and Kondo, K. (1965)J. Phys. Chem69, 4005CrossRefGoogle Scholar
  8. 8.
    Joyce, D.E. and Kurucse, T. (1981)Polymer 22, 415CrossRefGoogle Scholar
  9. 9.
    Morcellet-Sauvage, J.Morcellet, M., and Loucheux, C. (1981)Makromol Chem 182, 949CrossRefGoogle Scholar
  10. 10.
    Morishima, Y., Itoh, Y., and Nozakura, S. (1981)Makromol. Chem. 182, (5135)CrossRefGoogle Scholar
  11. 11.
    Guillet, J.E., Wang, J., and Gu, L. (1986)Macromolecules19, 2793CrossRefGoogle Scholar
  12. 12.
    Nemethy, G. and Scheraga, H.A. (1962)J. Chem. Phys.36, 3382CrossRefGoogle Scholar
  13. 13.
    Nemethy, G. and Scheraga, H.A. (1962)J. Phys. Chem. 66, 1773CrossRefGoogle Scholar
  14. 14.
    Jencks, WP. (1969) Catalysis in Chemistry and Enzymology; McGraw Hill, New York, pp 393Google Scholar
  15. 15.
    Morishima, Y., Nomura, S., Ikeda, T., Seki, M., and Kamachi, M. (1995)Macromolecules 28, 2874CrossRefGoogle Scholar
  16. 16.
    McCormick, C.L. and Chang, Y. (1994)Macromolecules 27, 2151CrossRefGoogle Scholar
  17. 17.
    Kamioka, K., Webber, S.E., and Morishima, Y. (1988)Macromolecules) 21 972CrossRefGoogle Scholar
  18. 18.
    Prochazka, K., Kiserow, D., Ramireddy, C., Tuzar, Z., Munk, P., and Webber, S. E. (1992) Macromolecules 25, 454CrossRefGoogle Scholar
  19. 19.
    Morishima, Y., Lim, H. S., Nozakura, S., and Strutevant, J. L. (1989) Macromolecules 22, 1148CrossRefGoogle Scholar
  20. 20.
    McCormick, C. L. and Salazar, L. C. (1992)Polymer 33, 4617 CrossRefGoogle Scholar
  21. 21.
    Chang, Y. and McCormick, C. L. (1993)Macromolecules26, 6121CrossRefGoogle Scholar
  22. 22.
    Morishima, Y., Tominaga, Y., Kamachi, M., Okada, T., Hirata, Y., and Mataga, N. (1991) Phys. Chem.95, 6027CrossRefGoogle Scholar
  23. 23.
    Morishima, Y., Tominaga, Y., Nomura, S., and Kamachi, M. (1992)Macromolecules25, 861CrossRefGoogle Scholar
  24. 24.
    Kalyanasundaram, K. and Thomas, J. K. (1977)J. Am. Chem. Soc 99, 2039CrossRefGoogle Scholar
  25. 25.
    Morishima, Y., Seki, M., Tominaga, Y., and Kamachi, M. (1992)J. Polym. Sci., Polym. Chem. Ed.30, 2099CrossRefGoogle Scholar
  26. 26.
    Seki, M., Morishima, Y., and Kamachi, M. (1992)Macromolecules.24, 6540Google Scholar
  27. Morishima, Y. (1990) Prog. Polym. Sci. 15, 949.
    Morishima, Y. (1990)Prog. Polym. Sci.15, 949CrossRefGoogle Scholar
  28. 28.
    Webber, S. E. (1990) Chem. Rev. 90, 1469CrossRefGoogle Scholar
  29. 29.
    Ringsdorf, H., Simon, J., and Winnik, F. M. (1992)Macromolecules 25, 7306CrossRefGoogle Scholar
  30. 30.
    Ringsdorf, H., Simon, J., and Winnik, F. M. (1992),Macromolecules25, 5353CrossRefGoogle Scholar
  31. 31.
    Winnik, F. M. (1990)Polymer31, 2125CrossRefGoogle Scholar
  32. 32.
    Berlman, I. B. (1973) Energy Transfer Parameters of Aromatic Compounds; Academic Press, New YorkGoogle Scholar
  33. 33.
    Hashimoto, S. and Thomas, J. K. (1985)J. Am. Chem. Soc.107, 4655CrossRefGoogle Scholar
  34. 34.
    Lakowicz, J. R.(1983)Principles of Fluorescence Spectroscopy;Plenum Press, New York, pp 281Google Scholar
  35. 35.
    Erdmann, K. and Gutsze, A. (1987)Colloid Polym. Sci. 265, 667CrossRefGoogle Scholar
  36. 36.
    Raby, P., Budd, P. M., Heatley, F., and Price, C. (1991)J. Polym. Sci., Polym. Phys. Ed29, 451CrossRefGoogle Scholar
  37. 37.
    Brereton, M. G., Ward, I. M., Boden, N., and Wright, P. (1991)Macromolecules 24, 2068CrossRefGoogle Scholar
  38. 38.
    Meiboom, S. and Gill, D. (1958)Rev. Sci. Instrum. 29, 688CrossRefGoogle Scholar
  39. 39.
    Pake, G. E. (1965) Solid State Physics; Seitz, F. and Turnbull, D. (eds.),Academic Press, New YorkVol. 2, pp. 1–92Google Scholar
  40. 40.
    Morishima, Y., Furui, T., Nozakura, S., Okada, T., and Mataga, N. (1989)J. Phys. Chem.93, 1643CrossRefGoogle Scholar
  41. 41.
    Morishima, Y. (1992)Adv. Polym. Sci. 104, 51Google Scholar
  42. 42.
    Morishima, Y. (1994)Trends Polym. Sci.2, 31Google Scholar
  43. 43.
    Morishima, Y., Tominaga, Y.;,Nomura, S., Kamachi, M., and Okada, T. (1992)J. Phys. Chem. 96, 1990CrossRefGoogle Scholar
  44. 44.
    Morishima, Y., Tsuji, M., Kamachi, M., and Hatada, K. (1992)Macromolecules 25, 4406CrossRefGoogle Scholar
  45. 45.
    Morishima, Y., Tsuji, M., Seki, M., and Kamachi, M. (1993)Macromolecules 26, 3299CrossRefGoogle Scholar
  46. 46.
    Aota, H., Morishima, Y., Kamachi, M. (1993)Photochem. Photobiol. 57, 989CrossRefGoogle Scholar
  47. 47.
    Morishima, Y., Saegusa, K., and Kamachi, M. (1995)Macromolecules 28, 1203CrossRefGoogle Scholar
  48. 48.
    Morishima, Y., Saegusa, K., and Kamachi, M. (1995)J. Phys. Chem. CrossRefGoogle Scholar
  49. 49.
    Delaire, J. A., Rodgers, M. A. J., and Webber, S. E. (1986)Eur. Polym. J. 22, 189CrossRefGoogle Scholar
  50. 50.
    Delaire, J. A., Sanquer-Barrie, M., and Webber, S. E. (1988)J. Phys. Chem. 92, 1252CrossRefGoogle Scholar
  51. 51.
    Stramel, R. D., Webber, S. E., and Rodgers, M. A. J. (1988)J. Phys. Chem. 92, 6625CrossRefGoogle Scholar
  52. 52.
    Nowakowska, M. and Guillet, J. E. (1991)Macromolecules 24, 474CrossRefGoogle Scholar
  53. 53.
    Philpot, M. R. (1975)J. Chem. Phys. 63, 485. CrossRefGoogle Scholar
  54. 54.
    Mataga, N., Kanda, Y., and Okada, T. (1986)Phys. Chem. 90, 3880CrossRefGoogle Scholar
  55. 55.
    Irie, M. and Tanaka, H. (1983)Macromolecules 16, 210CrossRefGoogle Scholar
  56. 56.
    Irie, M. and Schnabel, W. (1985)Macromolecules 18, 394CrossRefGoogle Scholar
  57. 57.
    Eisenbach, C. D. (1980)Bunsenges. Phys. Chem. 5, 680Google Scholar
  58. 58.
    Sung, C. S. P., Gould, I. R., and Turro, N. (1984)Macromolecules 17, 1447CrossRefGoogle Scholar
  59. 59.
    Mita, I., Horie, K., and Hirano, K. (1989)Macromolecules 22, 558CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers. Printed in the Netherlands 1996

Authors and Affiliations

  • Yotaro Morishima
    • 1
  1. 1.Department of Macromolecular Science, Faculty of ScienceOsaka UniversityToyonaka OsakaJapan

Personalised recommendations