Abstract

Much of the recent work on magnetic arcades is motivated by eruptive phenomena such as coronal mass ejections, prominence eruptions, and large two-ribbon flares. Arcade models of these phenomena are based on a rapid release of magnetic energy stored in coronal currents. However, the mechanisms by which the energy release is triggered vary from model to model. Some models trigger the release by a loss of ideal-MHD equilibrium, while others use a non-ideal processes such as magnetic reconnection. Models which invoke reconnection require the presence of a current sheet prior to the eruption of the field, but models which are based on a loss of equilibrium do not. By examining the observational evidence for the existence of a current sheet prior to the eruption, it may be possible to determine the Type of mechanism which triggers an eruption.

Keywords

Current Sheet Coronal Mass Ejection Solar Phys Flux Rope Neutral Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aly, J. J. (1991) Astrophys. J. 375, L61.ADSCrossRefGoogle Scholar
  2. Aly, J. J. (1994) Astron. and Astrophys. 288, 1012.ADSGoogle Scholar
  3. De La Beaujardière, J.-F., et al. (1995) Astrophys. J. 440, 386.ADSCrossRefGoogle Scholar
  4. Démoulin, P., Priest, E. R.& Ferreira, J. (1991) Astron.& Astrophys. 245, 289.ADSGoogle Scholar
  5. Dezju, L., Gesztelyi, L., Kondas, L., Kovacs, A.& Rostas, S. (1980) Solar Phys. 67, 317.ADSCrossRefGoogle Scholar
  6. Finn, J. M.& Chen, J. (1990) Astrophys. J. 349, 345.ADSCrossRefGoogle Scholar
  7. Forbes, T. G.& Acton, L. W. (1996) Astrophys. J. 459, in press.Google Scholar
  8. Forbes, T. G.& Priest, E. R. (1984) in Solar Terrestrial Physics: Present and Future (eds. D. M. Butler, K. Papadopoulous) NASA, p. 1Google Scholar
  9. Forbes, T. G.& Priest, E. R. (1995) Astrophys. J. 446, 377.ADSCrossRefGoogle Scholar
  10. Furth, H. P., Killeen& Rosenbluth, M. N. (1963) Phys. Fluids 6, 459.ADSCrossRefGoogle Scholar
  11. Heyvaerts, J.& Priest, E. R. (1976) Solar Phys. 47, 223.ADSCrossRefGoogle Scholar
  12. Inhester, B., Birn, J.& Hesse, M. (1992) Solar Phys. 138, 257.ADSCrossRefGoogle Scholar
  13. Kleczek, J. (1964) In AAS-NASA Symposium on the Physics of Solar Flares (ed. W. N. Hess) NASA, SP-50, pp. 77Google Scholar
  14. Kuperus, M.& Raadu, M. A. (1974) Astron. Astrophys. 21, 189.ADSGoogle Scholar
  15. Kurokawa, H. (1987) Solar Phys. 113, 259.ADSCrossRefGoogle Scholar
  16. Lin, J., Forbes, T. G., Priest, E. R.& Bungey, T. N. (1995) Solar Phys. 159, 275.ADSCrossRefGoogle Scholar
  17. Martinell, J. J. (1990) Astrophys. J. 365, 342.ADSCrossRefGoogle Scholar
  18. Mikic, Z., Barnes, D. C.& Schnack, D. D. (1988) Astrophys. J. 328, 830.ADSCrossRefGoogle Scholar
  19. Mikic, Z.& Linker, J. A. (1994) Astrophys. J. 430, 898.ADSCrossRefGoogle Scholar
  20. Steinolfson, R. S. (1991) Astrophys. J. 382, 677.Google Scholar
  21. Sturrock, P. A. (1991) Astrophys. J. 380, 655.ADSCrossRefGoogle Scholar
  22. Svestka, Z.& Cliver, E. W. (1992) in Eruptive Solar Flares (eds. Z. Svestka, B.V. Jackson, M. E. Machado) Springer-Verlag, New York, p. 1.CrossRefGoogle Scholar
  23. Van Tend, (1979) Solar Phys. 61, 89.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • T. G. Forbes
    • 1
  1. 1.Institute for the Study of Earth, Oceans, and SpaceUniversity of New HampshireDurhamUSA

Personalised recommendations