Second Order Entropy Consistent Modelling of Turbulent Compressible Flows

  • G. Brun
  • J. M. Hérard
  • L. Leal De Sousa
  • M. Uhlmann
Conference paper
Part of the Fluid Mechanics and its Applications book series (FMIA, volume 36)


We examine herein the suitability of some second order closures to describe turbulent compressible flows with shocks, applying the standard Favre averaging technique. The basic set of equations reads:
$$ \left( \rho \right),\text{t + }\left( {\rho \text{U}_\text{i} } \right),\text{i = 0} $$
$$ \left( {\rho \text{U}_\text{i} } \right),\text{t + }\left( {\rho \text{U}_\text{i} \text{U}_\text{j} } \right),_\text{j} + \left( {\rho \;\delta _{\text{ij}} } \right),_\text{j} + \left( {\text{R}_{\text{ij}} } \right),_\text{j} = - \left( {\mathop \Sigma \nolimits_{\text{ij}}^{\text{visc}} } \right),\text{j} $$
$$ \left( \text{E} \right),_\text{t} \text{ + }\left( {\text{E U}_\text{j} } \right),_\text{j} \text{ + }\left( {\text{U}_\text{i} \left( {\rho \text{ }\delta _{\text{ij}} + \text{R}_{\text{ij}} } \right)} \right),\text{j = - }\left( {\text{U}_\text{i} \left( {\mathop \Sigma \nolimits_{\text{ij}}^{\text{visc}} } \right)} \right),\text{j + }\left( {\sigma \text{E}\left( {\frac{\text{p}}{\rho }} \right)_\text{j} } \right),_\text{j} $$
$$ \left( {\text{R}_{\text{ij}} } \right),_\text{t} + \;\left( {\text{R}_{\text{ij}} \;\text{U}_\text{k} } \right),_\text{k} + \;\text{R}_{\text{ik}} \text{U}_{\text{j,k}} + \;\text{R}_{\text{jk}} \text{U}_{\text{i,k}} = \Phi _{i\text{j}} - \frac{2}{3}\left( {\frac{ \in }{\text{I}}} \right)\;\text{trace}\;\text{(R) }\delta _{\text{ij}} + \left( {\mathop \Phi \nolimits_{i\text{j}}^\text{k} } \right),\text{k} $$
$$ {{{\text{R}}}_{{{\text{ij}}}}} = \;\user1{\& }\;\rho \;{{{\text{u''}}}_{{\text{i}}}}\;{{{\text{u''}}}_{{\text{j}}}} > ;\;2{\text{k}}\;{\text{ = }}\;{\text{I}}\;{\text{ = }}\;{\text{trace(R)}}\;{\text{ = }}{{{\text{R}}}_{{{\text{ii}}}}} $$
$$ \mathop \Sigma \nolimits_{\text{ij}}^\text{v} = - \mu \left( {\text{U}_{\text{i,j}} + \text{U}_{\text{i,j}} - \frac{2}{3}\text{U}_{\text{1,1}} \delta _{i\text{j}} } \right);\;\text{p = }\left( {\gamma \text{ - 1}} \right)(\text{E - }\frac{{\rho \text{U}_\text{j} \text{U}_\text{j} }}{\text{2}} - \frac{1}{2}\text{R}_{\text{jj}} ) $$


Riemann Problem Riemann Solver Moment Closure Approximate Riemann Solver Entropy Weak Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    Colombeau, J.F. (1992) Multiplication of distributions, Springer-Verlag. MATHGoogle Scholar
  2. [2]
    Forestier, A., Hérard, J.M. and Louis, X. (1995) Exact or approximate Riemann solvers to compute a two-equation turbulent compressible model,Proc. of the Ninth Int. Conf. on Finite Elements in Fluids, New Trends and Applications. Part I. pp. 677–686.Google Scholar
  3. [3]
    Hérard, J.M. (1994) Basic analysis of some second moment closures, Part I: incompressible isothermal turbulent flows TCFD vol. 6, n°4, pp. 213–233.Google Scholar
  4. [4]
    Hérard, J.M. (1994) Basic analysis of some second moment closures. Part II: incompressible turbulent flows including buoyant effects, Coll. Notes internes DER 94NB00053.Google Scholar
  5. Hérard, J.M. Basic analysis of some second moment closures. Part III: turbulent compressible flows with shocks in preparation.Google Scholar
  6. [6]
    Hérard, J.M. (1995) Suitable algorithms to preserve the realisability of Reynolds stress closures ASME FED vol. 215, pp. 73–80.Google Scholar
  7. [7]
    Hérard, J.M. (1995) Solveur approché pour un système hyperbolique non conservatif issu de la turbulence compressible, EDF report HE-41/95/009/A.Google Scholar
  8. [8]
    Hérard, J.M., Forestier, A. and Louis, X. (1995) A non strictly hyperbolic system to describe compressible turbulence,Coll. Notes internes DER 95NB00003.Google Scholar
  9. Fu, S, Launder, B.E. and Tselepidakis, D.P. (1987) Accomodating the effects of high strain rates in modelling the pressure strain correlationsUMIST report TFD 87/5.Google Scholar
  10. [10]
    Le Floch, P. (1988) Entropy weak solutions to non linear hyperbolic systems in non conservative form, Comm. in Part. Diff. Eq. 13(6), pp. 669–727.MATHCrossRefGoogle Scholar
  11. [11]
    Le Floch, P. and Liu, T. P. (1992) Existence theory for non linear hyperbolic systems in non conservative form, CMAP report 254, to appear in Forum Mathematicum.. Google Scholar
  12. [12]
    Lumley, J.L. (1978) Computational modelling of turbulent flows, Advances in Applied Mechanics, vol. 18, pp. 123–176.MathSciNetADSMATHCrossRefGoogle Scholar
  13. [13]
    Shih, T. and Lumley, J.L. (1985) Modeling of pressure corelation terms in Reynolds stress and scalar flux equations, Cornell University report FDA-85–3.Google Scholar
  14. [14]
    Uhlmann, M. and Brun, G. (1995) Solveur pour le système des équations hyperboliques non conservatives issu d’un modèle de transport de tensions de Reynolds, ECL-METRAFLU report, (unpublished).Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • G. Brun
    • 2
  • J. M. Hérard
    • 1
  • L. Leal De Sousa
    • 1
  • M. Uhlmann
    • 2
  1. 1.EDF/DER/AEE/LNH/GRETChatouFrance
  2. 2.METRAFLUEcullyFrance

Personalised recommendations