Near-Wall Strong Sweeps and High Kurtosis Levels

Direct Simulation and Experiment
  • F. T. M. Nieuwstadt
  • J. M. J. Den Toonder
  • Z. Zhang
  • C. Xu
Conference paper
Part of the Fluid Mechanics and its Applications book series (FMIA, volume 36)

Abstract

In direct numerical simulations of wall turbulence, i.e. channel, pipe and boundary layers, in general a very high near-wall value is found for the kurtosis of the wall-normal velocity fluctuations. For instance values up to ~25 have been reported, see e.g. (Kim et al., 1987). In contrast, the experimental data up to now have not confirmed such high kurtosis levels and give considerable lower values, say around ~5 (Durst et al., 1995). This has led to some controversy between numerical simulators and experimentalists to explain the background of this discrepancy. We aim to resolve this problem with help of data from a direct simulation together with experimental data.

Keywords

Direct Numerical Simulation Velocity Fluctuation Pipe Flow Direct Simulation Streamwise Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aubry, N., Holmes, P., Lumley, J., L, Stone, E. (1988) The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192,115MathSciNetADSMATHCrossRefGoogle Scholar
  2. Buzug, Th. Pfister, P. (1992) Comparison of algorithms calculating optimal embedding parameters for delay time coordinates. Physica D 58,128.ADSCrossRefGoogle Scholar
  3. Farmer, D. J. Sidorovich, J. J (1987) Predicting chaotic time series. Phys Rev. Lett 59 (8), 845.MathSciNetADSCrossRefGoogle Scholar
  4. Grassberger, P. Schreiber, Th. Schaffrath, C. (1991) Nonlinear time sequence analysis. Int J. Bif Chaos. 1(3), 521.MathSciNetMATHCrossRefGoogle Scholar
  5. Hamilton, J. M., Kim, J. Waleffe, F. (1995) Regeneration mechanism of near-wall turbulent structures. J. Fluid Mech. 287,317.ADSMATHCrossRefGoogle Scholar
  6. Keefe, L, Moin, P. Kim, J. (1992) The dymension of attractors underlying periodic turbulent Poiseuille flow. J. Fluid Mech. 242, 1.MathSciNetADSMATHCrossRefGoogle Scholar
  7. Luchik, T. S. Tiederman, W. G. (1987) Timescale and structure of ejections and burst in turbulent channel flow. J. Fluid Mech. 174,529.ADSCrossRefGoogle Scholar
  8. Newell, A. C., Rand, D. A. Rüssel, D. (1988) Turbulent transport and the random occurrence of coherent events. Phisica D 33,281.ADSMATHCrossRefGoogle Scholar
  9. Porporato, A (1996) Ricerca di elementi di bassa dimensione nella turbolenza di parete. PhD. Thesis, Dept of Hydraulics-Polytechnic of Turin, (in Italian)Google Scholar
  10. Sanghi, S. Aubry, N. (1993) Mode interaction models for near-wall turbulence. J. Fluid Mech. 247,455.MathSciNetADSMATHCrossRefGoogle Scholar
  11. Takens, F. (1980) Detecting strange attractors in turbulence. In Lectures Notes in Math. vol. 898. SpringerGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • F. T. M. Nieuwstadt
    • 1
  • J. M. J. Den Toonder
    • 1
  • Z. Zhang
    • 2
  • C. Xu
    • 2
  1. 1.Laboratory of Aero- and HydrodynamicsTU-DelftDelftThe Netherlands
  2. 2.Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations