Formation of Uniform Crystalline Germanium(IV) Oxide Particles

  • S. Hamada
Part of the NATO ASI Series book series (ASHT, volume 12)

Abstract

Uniform polyhedral particles of crystalline germanium(IV) oxide with an average size of 2.0 μm and a relative standard deviation of 0.08 were prepared by cooling from 50 to 10 °C an ethanolic mixed solution (30% by volume) of 8.4 × 10-2nil dm-3 germanium (IV) and 1.7 mol dm-3 hydrochloric acid. The particles grew through a polynuclear layers mechanism as judged from chronomal analysis based on a fractional change of soluble germanium(IV) species remained in a supernatant solution. Uniform cuboidal particles of crystalline germanium(IV) oxide were also prepared by oxidizing at 100 °C a mixed solution of 0.11 mol dm-3 tris(oxalato)germanate(IV) complex, 4.0 mol dm-3 sulfuric acid, and ethanol of 13% by volume with 2.2 mol dm-3 hydrogen peroxide. An average size of the uniform particles thus obtained was estimated to be 3.4 µm with a relative standard deviation of 0.12. Additionally, uniform tetrahedral particles of sodium germanate(IV) (Na2Ge3O7 • 7H2O) were obtained at 100 °C and an initial pHi 8.5 from an ethanolic solution (50% by volume) of 3.5 × 10-2 mol dm-3 8-quinolinolatogermanium (IV) complex in the presence of a large amount of sodium ions.

Keywords

Oxide Particle Molybdenum Blue Method Reaction Degree Chromium Hydroxide Polyhedral Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matijevic, E. (1981) Monodispersed Metal (Hydrous) Oxides — A Fascinating Field of Colloid Science, Acc. Chem. Res., 14, 22–29.CrossRefGoogle Scholar
  2. 2.
    Matijevic, E (1985) Production of Monodispersed Colloidal Particles, Ann. Rev. Mater. Sci., 15, 483–516.CrossRefGoogle Scholar
  3. 3.
    Brace, R. and Matijevic, E (1973) Aluminum Hydrous Oxide Sols. I. Spherical Particles of Narrow Size Distribution, J. Inorg. Nucl. Chem., 35, 3691–3705.CrossRefGoogle Scholar
  4. 4.
    Hamada, S., Kudo, Y., and Hasegawa, S. (1991) Preparation of uniform spherical aluminum hydrous oxide particles from acetylacetonatoaluminum solutions, Colloid Polym. Sci, 269, 290–294.CrossRefGoogle Scholar
  5. 5.
    Matijevic, E, Lindsay, A. D., Kratohvil, S., Jones, M. E, Larson, R. I., and Cayey, N. W. (1971) Characterzation and Stability of Chromium Hydroxide Sols of Narrow Size Distribution, J. Colloid Interface Sci., 36, 273–281.CrossRefGoogle Scholar
  6. 6.
    Hamada, S., Bando, K., and Kudo Y. (1984) Formation of Monodispersed Gallium Hydrous Oxide Particles by Hydrolysis at Elevated Temperatures, Nippon Kagaku Kaishi, 1984, 1068–1071.Google Scholar
  7. 7.
    Hamada, S., Bando, K., and Kudo Y. (1986) The Formation Process of Hydrous Gallium(III) Oxide Particles Obtained by Hydrolysis at Elevated Tanperatures, Bull. Chem. Soc. Jpn., 59, 2063–2069.CrossRefGoogle Scholar
  8. 8.
    Stöber, W., Fink A., and Bohn, E (1987) Controlled Growth of Monodisperse Silica Spheres J. Colloid Interface Sci., 26, 62–69.CrossRefGoogle Scholar
  9. 9.
    Tan, C. G., Bowen B. D., and Epstein, N. (1987) Production of Monodisperse Colloidal Silica Spheres: Effect of Temperature, J. Colloid Interface Sci., 118, 290–293.CrossRefGoogle Scholar
  10. 10.
    Shimohira, T. and H. Ishijima,(1981) Synthesis cf Monodispersed Spherical Silica, Nippon Kagakukaishi 1981, 1503–1505.Google Scholar
  11. 11.
    Matijevic, E, Budnik, E. M., and Meites, L. (1977) Preparation and Mechanism of Formation of Titanium Dioxide Hydrosols of Narrow Size Distribution, J. Colloid Interface Sci., 61, 302–311.CrossRefGoogle Scholar
  12. 12.
    Santacesaria, E., Tonello, M., Stott, G., Pace, R. C., and Carra, S. (1986) Kinetics of Titanium Dioxide Precipitation by Thermal Hydrolysis, J. Colloid Interface Sci, 111, 44–53.CrossRefGoogle Scholar
  13. 13.
    Linke, W. F. (1958) Solubilities: Inorganic and Metal-Organic Compounds, Vol. I, Am. Chem. Soc., Washington DC, p. 1074.Google Scholar
  14. 14.
    Laubengayer, A. W. and Morton, D. S. (1932) GERMANIUM. XXXIX. THE POLYMORPHISM OF GERMANIUM DIOXIDE, J. Am. Chem. Soc., 54, 2303–2320.CrossRefGoogle Scholar
  15. 15.
    Erdey, L. and Bodor, A. (1951) Colorimetrische Milkrobestimmung des Germanium s, Z Anal. Chem., 134, 81–85.CrossRefGoogle Scholar
  16. 16.
    Kitson, R. E and Mello, M. G. (1944) Colorimetric Determination of Germanium as Molybdigermanic Acid, Ind. Eng. Chem, 16, 128–130.Google Scholar
  17. 17.
    Boltz, D. F. and Mellon, M. G. (1947) Determination of Phosphorus, Germanium, Silicon, and Arsenic by the Heteropoly Blue Method, Anal. Chem., 19, 873–877.CrossRefGoogle Scholar
  18. 18.
    H. F. Holtzclaw, Jr. (ed) (1966) Inorg. Synth., McGraw-Hill, New York, Vol. VIII, p. 34.CrossRefGoogle Scholar
  19. 19.
    Tchakirian A. (1939) La Chimie du Germanium, Ann. Chico (Paris), 12, 415–428.Google Scholar
  20. 20.
    Moeller, T. and Nielsen, N. C. (1953) Partial Resolution of the Tris-(oxalato)-germanate(IV) Ion, J. Am. Chem. Soc., 75, 5106–5107.CrossRefGoogle Scholar
  21. 21.
    Bates, R. G. (1964) Determination of pH, John Wiley, New York, p. 222.Google Scholar
  22. 22.
    McMunlie, H. (1986) Powder Diffraction, Vol. 1, p. 69.Google Scholar
  23. 23.
    Linke, W. F. (1965) Solubilities: Inorganic and Metal-Organic Compounds, Vol. II, Am. Chem. Soc., Washington D.C., p. 1452.Google Scholar
  24. 24.
    Nielsen, A. V. (1964) Kinetics of Precipitation, Pergamon Press, New York, Chaps. 3 and 4.Google Scholar
  25. 25.
    Hamada, S., Niizeki, S., and Kudo, Y. (1986) The Precipitation of Monodispersed α-Iron(III) Oxide Particles from Iron(II) Chloride-Glycine System in Aqueous and 2-Propanol/Water Media, Bull. Chem. Soc. Jpn., 59, 3443–3450.CrossRefGoogle Scholar
  26. 26.
    Hamada, S., Kudo, Y., and Matsumoto, T. (1989) The Preparation of Monodispersed α-Jron(III) Oxide Particles from 2,2’-Bipyridineiron(M) Complex, Bull. Chem, Soc. Jpn., 62, 1017–1022.CrossRefGoogle Scholar
  27. 27.
    Hamada. S., Kudo. Y., and Kobayashi, T. (1993) Precipitation of Uniform Indium Hydroxide Particles from Indium 2-Aminobutyrato Complex Solutions, Colloid & Surfaces A, Physicochemical and Engineering Aspects, 79, 227–232.CrossRefGoogle Scholar
  28. 28.
    Tsau, L, Matsouo, S., Clear, P., and Benoit, R. (1967) Chélates du gennanium(IV) avec l’hydroxy-8quinoléine et des dérives substitués, Bull. Soc. Chico. Fra., 1967, 1039–1043.Google Scholar
  29. 29.
    Knyazev, E A. and Borisova, S. V. (1967) THE Ge2-Na2O-H2O SYSTEM AT 25 °C, Russ. J. Inorg. Chem., 12, 1469–1471.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • S. Hamada
    • 1
  1. 1.Department of Applied Chemistry, Faculty of Science, and Institute of Colloid and Surface ChemistryScience University of TokyoTokyoJapan

Personalised recommendations