Oligonucleotide-Directed Recognition of Double-Helical DNA

  • Claude Hélène
  • Thérèse Garestier
Part of the NATO ASI Series book series (NSSE, volume 320)

Abstract

The rational design of sequence-specific ligands of nucleic acids is an active field of research with several goals i) to provide molecular biologists with new tools to investigate the function of specific genes and the role of specific sequences in the control of gene expression, ii) to develop sequence-specific artificial nucleases that could cleave long DNA fragments at selected sites, e.g., for mapping genes on chromosomes, iii) to provide a rational basis for the development of new therapeutic agents based on selective modulation of gene expression.

Keywords

Double Helix Triple Helix Major Groove Nucleic Acid Basis Intercalate Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hélène, C, Toulmé, JJ. (1990) Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochimica et Biophysica Acta, 1049,99–125.Google Scholar
  2. 2.
    Ojmang J. O., Hampel, A., Looney, D. J., Wong-Staal, F., & Rapaport, J. (1992) Inhibition of HIV-1 expression by a hairpin ribozyme, Proc. Nat. Acad. Sci, USA, 89, 10802–10806.Google Scholar
  3. 3.
    Hélène, C (1991) The anti-gene strategy : control of gene expression by triplex-forming-oligonucleotides, Anti-cancer Drug Design, 6, 569–584.Google Scholar
  4. 4.
    Thuong, N. T., & Hélène, C. (1993) Sequence-specific recognition and modification of double-helical DNA by oligonucleotides, Angew. Chem. Internal. Ed. Engl., 32, 666–690.Google Scholar
  5. 5.
    Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H., & Toole, J. J. (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 355, 564–566.CrossRefGoogle Scholar
  6. 6.
    Sun, J. S., and Hélène, C. (1993) Oligonucleotide-directed triplehelix formation, Current Opinion in Structural Biology, 3, 345–356.CrossRefGoogle Scholar
  7. 7.
    Sun, J. S., Giovannangeli, C, Francis, J. C., Kurfurst, R., Montenay-Garestier, Th., Saison-Behmoaras, T., Thuong N. T., & Hélène, C. (1991) Triple-helix formation by ocoligodeoxynucleotides and a-oligodeoxynucleotide-intercalator conjugates, Proc. Natl. Acad. Sci., USA, 88, 6023–6027.CrossRefGoogle Scholar
  8. 8.
    Mergny, J. L., Duval-Valentin, G., Nguyen, C. H., Perrouault, L., Faucon, B., Rougee, M., Montenay-Garestier, Th., Bisagni, E., & Hélène, C. (1992) Triple helix specific ligands, Science, 256, 1681–1684.CrossRefGoogle Scholar
  9. 9.
    Hélène, C. (1993) Sequence-selective recognition and cleavage of double-helical DNA, Current Opinion in Biotechnology, 4, 29–36.CrossRefGoogle Scholar
  10. 10.
    Takasugi, M., Guendouz, A., Chassignol, M., Decout, J. L., Lhomme, J., Thuong, N. T., & Hélène, C. (1991) Sequence-specific photo-induced cross-linking of the two strands of double-helical DNA by a psoralen covalently linked to a triple helix-forming oligonucleotide, Proc. Natl. Acad. Sci., USA, 88, 5602–5606.CrossRefGoogle Scholar
  11. 11.
    Strobel, S. A., and Dervan, P. B. (1992) Triple helix-mediated singlesite enzymatic cleavage of megabase genomic DNA, Methods in Enzymology, 216, 309–321.CrossRefGoogle Scholar
  12. 12.
    François, J. C., Saison-Behmoaras, T., Barbier, C., Chassignol, M., Thuong, N. T., & Hélène, C. (1989) Sequence-specific recognition and cleavage of duplex DNA via triple-helix formation by oligonucleotides covalently linked to a phenanthroline-copper chelate, Proc. Natl. Acad. Sci., USA, 86, 9702–9706.CrossRefGoogle Scholar
  13. 13.
    Perrouault, L., Asseline, U., Rivalle, C, Thuong, N. T., Bisagni, E., Giovannangeli, C., Le doan, T., & Hélène, C. (1990) Sequencespecific artificial photo-induced endonucleases based on triple helix-forming oligonucleotides, Nature, 344, 358–360.CrossRefGoogle Scholar
  14. 14.
    Grigoriev, M., Praseuth, D., Guieysse, A. L., Robin, P., Thuong, N. T., Hélène, C, & Harel-Bellan, A. (1993) Inhibition of gene expression by triple helix-directed DNA cross-linking at specific sites, Proc. Natl. Acad. Sci., USA, 90, 3501–3505.CrossRefGoogle Scholar
  15. 15.
    Sun, J.S., François, J. C., Montenay-Garestier, Th., Saison-Behmoaras, T., Roig, V., Thuong, N. T., & Hélène, C.(1989) Sequence-specific intercalating agents : intercalation at specific sequences on duplex DNA via major groove recognition by oligonucleotide-intercalator conjugates,Proc Natl. Acad. Sci., USA, 86,9198–9202.Google Scholar
  16. 16.
    Giovannangeli, C, Montenay-Garestier, Th., Rougee, M., Chassignol, M., Thuong, N. T., & Héléne, C (1991) Single-stranded DNA as a target for triple-helix formation, J. Am. Chem. Soc, 113, 7775–7777.CrossRefGoogle Scholar
  17. 17.
    Giovannangeli, C, Thuong, N. T., & Hélène, C. (1993) Oligonucleotide clamps arrest DNA synthesis on a single-stranded target, Proc. Natl. Acad. Sci., USA, 90, 10013–10017.CrossRefGoogle Scholar
  18. 18.
    Shimizu, M., Konishi, A., Shimada, Y., Inoue, H. & Otsuka, E. (1992) : Oligo (2’-0-methyl) ribonucleotides. Effective probes for duplex DNA,FEBS Lett, 302, 155–158.CrossRefGoogle Scholar
  19. 19.
    Escudé, C, Sun, J. S., Rougée, ML, Garestier, Th., & Hélène, C. (1992) : Stable triple helices are formed upon binding of RNA oligonucleotides and their 2’-0-methyl derivatives to double-helical DNA, C.R. Acad. Sci., Paris, Série III, 315, 521–525.Google Scholar
  20. 20.
    Roberts, R. W. and Crothers, D. M. (1992) Stability and Properties of Double and Triple Helices : Dramatic Effects of RNA or DNA Backbone Composition, Science, 258, 1463–1466.Google Scholar
  21. 21.
    Han, H. and Dervan, P. B. (1993) Sequence-specific recognition of double-helical RNA and RNA-DNA by triple helix formation, Proc. Natl. Acad. Sci., USA, 90, 3806–3810.CrossRefGoogle Scholar
  22. 22.
    Escudé, C, François, J. C., Sun, J. S., Ott, G., Sprinzl, M., Garestier, Th. and Hélène, C.(1993) Stability of triple helices containing RNA and DNA strands : experimental and molecular modeling studies,Nucleic Acids Research, 21, 5547–5553.CrossRefGoogle Scholar
  23. 23.
    Rougée, M., Faucon, B., Mergny, J. L., Barcelo, F., Giovannangeli, C, Montenay-Garestier, T. & Hélène, C. (1992) : Kinetics and thermodynamics of triple helix formation : effects of ionic strength and mismatches, Biochemistry, 31, 92699278.CrossRefGoogle Scholar
  24. 24.
    Stilz, H. U. & Dervan, P. B. (1993) : Specific recognition of C.G base pairs by 2’-deoxynebularine within the purine•purine•pyrimidine triple helix motif, Biochemistry, 32, 2177–2185.CrossRefGoogle Scholar
  25. 25.
    Beal, P. A. & Dervan, P. B. (1992) : Recognition of double helical DNA by alternate strand triple helix formation, Am. Chem. Soc, 114, 4976–4982.CrossRefGoogle Scholar
  26. 26.
    Pley, H. W., Flaherty, K. M. & Mc Kay, D. (1994) : Threedimensional structure of a hammerhead ribozyme, Nature, 372, 68–74.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Claude Hélène
    • 1
  • Thérèse Garestier
    • 1
  1. 1.Laboratoire de Biophysique INSERM U.201 - CNRS URA 481Muséum National d’Histoire NaturelleParis Cedex 05France

Personalised recommendations