Near Field Optics with High-Q Whispering-Gallery Modes

  • N. Dubreuil
  • J. C. Knight
  • J. Hare
  • V. Lefevre-Seguin
  • J. M. Raimond
  • S. Haroche
Chapter
Part of the NATO ASI Series book series (NSSE, volume 319)

Abstract

High-Q whispering-gallery modes (WGM) are resonant electromagnetic modes which can be observed in dielectric microspheres with diameters larger than about ten times the wavelength [1]. They correspond to high angular momentum states of the electromagnetic field in which light propagates close to the sphere’s surface by repeated total internal reflection. The confinement of the light field in a small volume implies very high values of the electric field per photon. As a result, microdroplets have been shown to exhibit various non-linear optical effects induced at low power excitation. Cavity-enhanced stimulated emission [2], as well as laser action [3], has also been observed in dye-doped droplets. More recently, semiconductor microcavities have been investigated and microdisk lasers based on WGMs have been demonstrated [4]. Another remarkable feature can be achieved with silica microspheres. In this low-loss material, photon storage tinles in the range of one microsecond have been observed, which correspond to quality factors Q greater than 109 [5,6,7,8]. Such high Q values cOlnbined with small mode volumes are rather promising for the pursuit of Cavity Quantum Electrodynamics experiments in the strong coupling regime where a few atoms or ions are tightly coupled to a cavity mode which contains a small number of photons, or is even in the vacuum state [9]. These two properties have also allowed several groups to observe laser action in doped microspheres [10, 11] and we are currently investigating high-Q neodymium-doped microspheres showing very low-thresholds.

Keywords

Total Internal Reflection Transverse Electric Evanescent Field Probe Fiber Input Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A thorough review of Mie resonances is presented in “Optical effects associated with small particles”, Advanced Series in Applied Physics, Vol. 1, P. W. Barber and R. K. Chang, Eds. (World Scientific, Singapore, 1988).Google Scholar
  2. 2.
    Campillo A. J., Eversole J. D. and Lin H. -B., (1991) Cavity Quantum Electrodynamics enhancement of stimulated emission in microdroplets, Phys. Rev. Lett. 67, 437.ADSCrossRefGoogle Scholar
  3. 3.
    Tzeng H. -M., Wall K. F., Long M. B. and Chang R. K., (1984) Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances, Opt. Lett. 9, 499.ADSCrossRefGoogle Scholar
  4. 4.
    Yamamoto Y. and Slusher R. E., Optical Processes in Microcavities, Physics Today, 46(6), June 1993. p. 66, and references included.CrossRefGoogle Scholar
  5. 5.
    Braginsky V. B., Gorodetsky M. L. and Ilchenko V. S., (1989) Quality-factor and nonlinear optical properties of optical whispering-gallery modes, Phys. Lett. A 137? 393.CrossRefGoogle Scholar
  6. 6.
    Collot L., Lefevre-Seguin V., Brune M., Raimond J. M., and Haroche S., (1993) Very high-Q resonances observed on fused silica microspheres, Europhys. Lett., 23, 327.ADSCrossRefGoogle Scholar
  7. 7.
    Weiss D. S., Sandoghdar V., Hare J., Lefevre-Seguin V., Raimond J. -M. and Haroche S., (1995) Splitting of high-Q Mie modes by light backscattering in silica microspheres, Opt. Lett. 20, 1835.ADSCrossRefGoogle Scholar
  8. 8.
    Gorodetsky M. L. Savchenkov A. A. and Ilchenko V. S., (1995) Postdeadline paper submitted to ICONOL Laser Optics 1995, St. Petersburg.Google Scholar
  9. 9.
    Haroche S., Cavity Quantum Electrodynamics, “Fundamental Systems in Quantum Optics, Les ffouches Summer School, Session LIII”, J. Dalibard, J.M. Raimond, and J. Zinn-Justin, eds., (North Holland, Amsterdam, 1992) and references included.Google Scholar
  10. 10.
    Yuzhu Wang, Yongqing Li, Yashu Liu and Baolong Lu, (1991) A Nd-glass microsperical cavity laser induced by Cavity QED effects, in SPIE Proc. Advanced Laser Concepts and Applications, Vol. 1501 p. 40.Google Scholar
  11. 11.
    Kuwata-Gonokami M., Takeda K., Yasuda H. and Ema K., (1992) Laser emission from dye-doped polystyrene microspheres, Jpn. J. Appl. Phys. 31, L99.ADSCrossRefGoogle Scholar
  12. 12.
    Knight J. C., Dubreuil N., Sandoghdar V., Hare J., Lefèvre-Seguin V., Raimond J. -M, and Haroche S., (1995) Mapping whispering-gallery modes in microspheres with a near-field probe, Opt. Lett. 20, 1515.ADSCrossRefGoogle Scholar
  13. 13.
    Knight J, C., Dubreuil N., Sandoghdar V., Hare J., Lefèvre-Seguin V., Raimond J.- M. and Haroche S., (1996) Characterising whispering-gallery modes in microspheres by direct observation of the optical standing wave in the near field, submitted to Opt Lett.Google Scholar
  14. 14.
    Lord Rayleigh, (1877) “The Theory of Sound”, vol. 2 Chap. 14, (Dover Publications, N. Y., 1965); see also Lord Rayleigh, (1881) Phil. Mag. 12, 81 and (1914) Phil. Mag. 27, 100.Google Scholar
  15. 15.
    Mie G., (1908) Ann. Phys. 25, 377CrossRefGoogle Scholar
  16. 16.
    Lai H. M., Lam C. C., Leung P. T. and Young K., (1991) Effect of pertubations on the widths of narrow morphology-dependent resonances in Mie scattering, J. Opt. Soc. Am. B8 1962.ADSGoogle Scholar
  17. 17.
    Chen G., Chang R. K.,. Hill S. C, and Barber P. W., (1991) Frequency splitting of degenerate spherical cavity modes: stimulated Raman scattering spectrum of deformed droplets, Opt. Lett. 16, 1269.ADSCrossRefGoogle Scholar
  18. 18.
    Swindal J. C., Leach D. H., Chang R. K., and Young K., (1993) Precession of morphology-dependent resonances in non-spherical droplets, Opt. Lett. 18, 191.ADSCrossRefGoogle Scholar
  19. 19.
    Chen G., Mazumder M. M., Chemla Y. R., Serpengüzel A., Chang R. K., and Hill S. C., Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets, Opt. Lett. 18 (1993) 1993.ADSCrossRefGoogle Scholar
  20. 20.
    Gorodetsky M. L. and Ilchenko V. S., (1994) High-Q whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers, Opt. Commun. 113 133.ADSCrossRefGoogle Scholar
  21. 21.
    Heinzelmann H. and Pohl D. W., (1994) Scanning near-field optical microscopy, Appl Phys. A 59 89.Google Scholar
  22. 22.
    Courjon D., Bainier C. and Baida F., (1994) Seeing inside a Fabry-Perot resonator by means of a scanning tunneling optical microscope, Opt. Commun. 110, 7.ADSCrossRefGoogle Scholar
  23. 23.
    Dubreuil N., Knight J. C., Leventhal D. K., Sandoghdar V., Hare J., and Lefevre V., (1995) Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres, Opt. Lett. 20, 813.ADSCrossRefGoogle Scholar
  24. 24.
    Schiller S. and Byer R. L., (1991) High-resolution spectroscopy of whispering-gallery modes in large dielectric spheres, Opt. Lett. 16, 1138.ADSCrossRefGoogle Scholar
  25. 25.
    Eversole J. B., Lin H.-B., A. L. Huston and Campillo A. J., (1990) Spherical cavity-mode assignments of optical resonances in microdroplets using elastic scattering, J. Opt Soc, Am. A7, 2159.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • N. Dubreuil
    • 1
  • J. C. Knight
    • 1
  • J. Hare
    • 1
  • V. Lefevre-Seguin
    • 1
  • J. M. Raimond
    • 1
  • S. Haroche
    • 1
  1. 1.Laboratoire Kastler-Brossef†Département de PhysiqueRue Lhomond, ParisFrance

Personalised recommendations