“Soft Spots” in the Global Methane Budget

  • William S. Reeburgh


Direct rate measurements under in situ conditions are needed to assess the balance between methane production and consumption in the global methane budget. Measurements of potential CH4 production and oxidation have advanced our understanding and provide a start at predicting the role of CH4 oxidation under altered climate conditions in a range of important CH4 source terms. In situ rate measurements or methods for assessing the fraction of CH4 oxidized have not been possible in wetlands, rice paddies, and landfills. This paper summarizes recent work on these uncertain budget terms and points out approaches needed for in situ measurements


Isotope Fractionation Factor Landfill Cover Soil Global Methane Budget Direct Rate Measurement Water Column Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamsen APS, King GM (1993) Appl. Environ. Microbiol. 59, 485–490.PubMedCentralPubMedGoogle Scholar
  2. Augenstein D (1992) Global Environ. Change 2, 311–328.CrossRefGoogle Scholar
  3. Barker F, Fritz P (1981) Nature 293, 289–291.CrossRefGoogle Scholar
  4. Bender M, Conrad R (1992) FEMS Microbiol. Ecol. 101, 261–270.Google Scholar
  5. Bingemer HJ, Crutzen PJ (1987) J. Geophys. Res. 92, 2181–2187.CrossRefGoogle Scholar
  6. Chanton JP et al (1995) Geochim. Cosmochim. Acta 59: 3663–3668.CrossRefGoogle Scholar
  7. Cicerone RJ, Oremland RS (1988) Global Biogeochem Cycles 2, 299–327.CrossRefGoogle Scholar
  8. Coleman DD et al (1981) Geochem. Cosmochim. Acta 45, 1003–1037.Google Scholar
  9. Conrad R, Rothfuss F (1991) Biol. Fertil. Soils 12, 28–32.CrossRefGoogle Scholar
  10. De Angelis MA, Lee C (1994) Limnol. Oceanogr. 39, 1298–1308.CrossRefGoogle Scholar
  11. De Bont JAM et al (1978) Ecol. Bull. (Stockholm) 26, 91–96.Google Scholar
  12. Dise NB, Gorham E (1993) J. Geophys. Res. 98,10, 583–10, 594.CrossRefGoogle Scholar
  13. Epp MA, Chanton JP (1993) J. Geophys. Res. 98, 18413–18,422.CrossRefGoogle Scholar
  14. Fung I et al (1991) J. Geophys. Res. 96, 13,033–13,065.CrossRefGoogle Scholar
  15. Funk DW et al (1994) Global Biogeochem. Cycles 8, 271–278.CrossRefGoogle Scholar
  16. Gerard G, Chanton J (1993) Biogeochemistry 23, 79–97.CrossRefGoogle Scholar
  17. Happell J D, Chanton JP (1993) Global Biogeochem. Cycles 7, 475–490.CrossRefGoogle Scholar
  18. Happell JD. et al (1993) J. Geophys. Res. 98(D8), 14,771-14,782.CrossRefGoogle Scholar
  19. Happell JD. et al (1994) Geochim. Cosmochim. Acta 58, 4377–4388.CrossRefGoogle Scholar
  20. Harvey LDD, Huang Z (1995) J. Geophys. Res. 100, 2905–2926.CrossRefGoogle Scholar
  21. Hoehler TM et al (1994) Global Biogeochem. Cycles 8, 451–463.CrossRefGoogle Scholar
  22. Hoehler TM, Alperin M (this volume).Google Scholar
  23. Hovland M, Judd AG (1988) Seabed Pockmarks and Seepages: Impact on Geology,Biology and the Marine Environment, Graham&Trotman, London.Google Scholar
  24. Hovland M et al (1993) Chemosphere 26, 559–578.CrossRefGoogle Scholar
  25. Jensen P et al (1992) Mar. Ecol. Prog. Ser. 83, 103–112.CrossRefGoogle Scholar
  26. Jones HA, Nedwell DM (1990) Waste Mgt. Res. 8, 21–31.CrossRefGoogle Scholar
  27. Karl DM, Tilbrook BD (1994) Nature 368, 732–734.CrossRefGoogle Scholar
  28. King GM (1990a) Nature 345, 513–515.CrossRefGoogle Scholar
  29. King GM (1990b) FEMS Microbiol. Ecol. 74,309–324.Google Scholar
  30. King GM (1992) Adv. Microb. Ecol. 12,431–468. Plenum Press, New York.CrossRefGoogle Scholar
  31. King GM (1993) In Murrell JC and Kelley DP, eds, Microbial Growth on C-1 Compounds,pp 303–313, Intercept Ltd., UK.Google Scholar
  32. King SL et al (1989) J. Geophys. Res. 94(D15), 18,273–18,277.CrossRefGoogle Scholar
  33. Mancinelli RL, McKay CP (1985) In AA Antonopoulos, ed, 1st Symposium on Biotechnological Advances in Processing Municipal Wasters for Fuels and Chemicals, Argonne National Laboratory Report ANL/CNSV-TM-167.Google Scholar
  34. Marty DG (1993) Limnol. Oceanogr. 38, 452–456.CrossRefGoogle Scholar
  35. Merritt DA et al (1995) J. Geophys. Res., 100, 1317–1326.PubMedCrossRefGoogle Scholar
  36. Minoda T, Kimura M (1994) Geophys. Res. Lett. 21, 2007–2010.CrossRefGoogle Scholar
  37. Moore T, Knowles R (1989) Can. J. Soil Sci. 69, 33–38.CrossRefGoogle Scholar
  38. Moore T, Roulet NT (1993) Geophys. Res. Lett. 7, 587–590.CrossRefGoogle Scholar
  39. Oremland RS, Culbertson CW (1992) Nature 356, 421–423.CrossRefGoogle Scholar
  40. Popp BN et al (1995) Anal. Chem., 67, 405–411.CrossRefGoogle Scholar
  41. Reeburgh WS et al (1991) Deep-Sea Res. 38, S1189 – S1210.CrossRefGoogle Scholar
  42. Reeburgh WS, Whalen SC (1992) Ecol. Bull. (Copenhagen) 42, 62–70.Google Scholar
  43. Reeburgh WS et al (1993) In Murrell JC and Kelley DP, eds Microbial Growth on C-1 Compounds, pp 1–14, Intercept Ltd, UK.Google Scholar
  44. Roulet NT et al (1993) Global Biogeochem. Cycles 7, 749–769.CrossRefGoogle Scholar
  45. Silverman MP, Oyama VI (1968) Anal. Chem. 40, 1833–1877.PubMedCrossRefGoogle Scholar
  46. Tyler SC et al (1994) Geochim. Cosmochim. Acta 58, 1625–1633.CrossRefGoogle Scholar
  47. Ward BB et al (1987) Nature 327, 226–229.CrossRefGoogle Scholar
  48. Whalen SC et al (1990) Appl. Environ. Microbiol. 56, 3405–3411.PubMedCentralPubMedGoogle Scholar
  49. Whalen SC et al (1992) Biogeochemistry 16, 181–211.CrossRefGoogle Scholar
  50. Whalen SC, Reeburgh WS (1992) Global Biogeochem. Cycles 6, 139–159.CrossRefGoogle Scholar
  51. Whiticar MJ, Faber E (1986) Org. Geochem. 10, 759–768.CrossRefGoogle Scholar
  52. Whiting GJ, Chanton JP (1993) Nature 364, 794–795.CrossRefGoogle Scholar
  53. Zyakun AM et al (1987) Geokhimiya 7, 1007–100.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • William S. Reeburgh
    • 1
  1. 1.Earth System ScienceUniversity of California, IrvineIrvineUSA

Personalised recommendations