Modeling in Laser Materials Processing: Melting, Alloying, Cladding

  • A. Kar
  • J. Mazumder
Part of the NATO ASI Series book series (NSSE, volume 307)

Abstract

With the advent of high power lasers, the laser technology has taken an important place in the areas of manufacturing and materials processing. To utilize this technology in the economical and efficient ways, a proper understanding of the phase changes occurred during laser processing is required. Both theoretical and experimental studies are required to achieve this goal. This paper presents several mathematical models for various types of laser processing. Most of the laser processing involves the melting, vaporization, and solidification of materials. Due to the inherent rapid cooling rate, novel microstructures with metastable phases are produced during laser processing. Laser cladding is a technique to coat a substrate with a thick layer of other materials to improve the surface properties of the substrate. If the cladding powder is a mixture of more than one type of materials, the resulting coating is usually found to have metastable phases with nonequilibrium compositions. The solidification rate, which affects the composition of the nonequilibrium alloys, is obtained by solving the energy conservation equations in the melt, solidified clad, and substrate regions. Also, the mass transfer equation is solved to determine the distribution of solute atoms in the liquid and solid regions. Finally, the model is used to obtain the nonequilibrium phase diagrams for Ni-Al, Ni-Hf, and Nb-Al systems. The partition coefficient is found to be an important parameter for this model, and for this reason, an expression for the nonequilibrium partition coefficient for the concentrated binary systems is also presented in this paper.

Keywords

Solute Atom Equilibrium Phase Diagram Laser Cladding Initial Pool Mass Transfer Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Singh and J. Mazumder, Acta metall. 35, 1995 (1987).CrossRefGoogle Scholar
  2. 2.
    J. Mazumder and W. M. Steen, J. appi. Phys. 51, 941 (1980).CrossRefGoogle Scholar
  3. 3.
    E. Cline and T. R. Anthony, J. appi. Phys. 48, 3895 (1977).CrossRefGoogle Scholar
  4. 4.
    S. Kou, S. C. Hsu and R. Mehrabian, Metall, Trans. 12B, 33 (1981).CrossRefGoogle Scholar
  5. 5.
    M. F. Ashby and K. E. Easterling, Acta metal. 32, 1935 (1984).CrossRefGoogle Scholar
  6. 6.
    C. Chan, J. Mazumder and M. M. Chen, Metall. Trans. 15A, 2175 (1984).Google Scholar
  7. 7.
    T. Chande and J. Mazumder, J. appi. Phys. 57, 2226 (1985).CrossRefGoogle Scholar
  8. 8.
    J. C. Baker and J. W. Cahn, Solidification, pp. 23–58, Am. Soc. Metals, Metals Park, Ohio (1971).Google Scholar
  9. 9.
    W. J. Boettinger and J. H. Perepezko, Proc., Rapidly Solidified Crystalline Alloys, TMS-AIME, N.J. (1985).Google Scholar
  10. 10.
    W. J. Boettinger, S. R. Coriell and R. F. Sekerka, Mater. Sci. Engng 65, 27 (1984).CrossRefGoogle Scholar
  11. 11.
    B. H. Kear, B. C. Giessen and M. Ghen (editors) Rapidly Solidified Amorphous and Crystalline Alloys, Proc. M.R.S. Vol. 8, Boston, Mass. (1981).Google Scholar
  12. 12.
    L. J. Li and J. Mazumder, Laser Processing of Materials (edited by Mukherjee K. and J. Mazumder), pp. 35–50. Proc. Metal. Soc. AIME, Los Angeles, Calif. (1984).Google Scholar
  13. 13.
    A. Kar and J. Mazumder, J. appi. Phys. 61, 2645 (1987).CrossRefGoogle Scholar
  14. 14.
    A. Kar and J. Mazumder, Acta Metall. 36, 701(1988).Google Scholar
  15. 15.
    A. Kar and J. Mazumder, Met. Trans. 20, 363(1989).Google Scholar
  16. 16.
    E. Y. Yankov, J. A. Todd, and S. M. Copley, in Proc. Morris E. Fine Symp., P. K. Liaw, J. R. Weertman, H. L. Marcus, and J. S. Santner, eds., TMS, Warrendale, Pennsylvania, 1991, P. 29.Google Scholar
  17. 17.
    E. Y. Yankov, S. M. Copley, M. I. Yankov, and J. A. Todd, in Proc. Morris E. Fine Symp., P. K. Liaw, J. R. Weertman, H. L. Marcus, and J. S. Santner, eds., TMS, Warrendale, Pennsylvania, 1991, P. 33.Google Scholar
  18. 18.
    K. A. Jackson, Can J. Phys., 36, 683 (1958).CrossRefGoogle Scholar
  19. 19.
    V. T. Borisov, Soviet Phys. Dokl. 7, 50 (1962).Google Scholar
  20. 20.
    J. C. Baker and J. W. Cahn, Acta Metall., 17, 575 (1969).CrossRefGoogle Scholar
  21. 21.
    A. A. Chernov, Growth of Crystals (Consultants Bureau, New York, 1962), 3, p. 35.Google Scholar
  22. 22.
    J. W. Cahn, S. R. Coriell, and W. J. Boettinger, in Laser and Electron Beam Processing of Materials, Ref. 7,89.Google Scholar
  23. 23.
    K. A. Jackson, G. H. Silmer, and H. J. Leamy, in Laser and Electron Beam Processing of Materials, C. W. White and P. S. Peercy, eds., Academic Press, New York, 1980, p. 104.Google Scholar
  24. 24.
    R. F. Wood, J. C. Wang, G. E. Giles, and J. R. Kirkpatrick, in Laser and Electron Beam Processing of Materials, C. W. White and P. S. Peercy, eds., Academic Press, New York, 1980, p. 37.Google Scholar
  25. 25.
    R. F. Wood, Appi. Phys. Lett. 37, 302 (1980).CrossRefGoogle Scholar
  26. 26.
    R. F. Wood, and G. E. Giles, Phys. Ref. B23, 2923 (1981).Google Scholar
  27. 27.
    R. F. Wood, J. R. Kirkpatrick, and G. E. Giles, Phys. Rev. B23, 5555 (1981).Google Scholar
  28. 28.
    R. F. Wood, Phys. Rev., B25, 2786 (1982).CrossRefGoogle Scholar
  29. 29.
    M. J. Aziz, J. Appi. Phys., 53, 1158 (1982).CrossRefGoogle Scholar
  30. 30.
    G. H. Gilmer and P. Bennema, J. Appi. Phys., 43, 1347 (1972).CrossRefGoogle Scholar
  31. 31.
    G. H. Gilmer and K. A. Jackson, in Crystal Growth and Materials, E. Kaldis and H. J. Scheel, eds., North-Holland, New York, 1977, p. 80.Google Scholar
  32. 32.
    G. H. Gilmer, in Materials Research Society Symposium, Elsevier, New York, 1983, Vol. 13, p. 249.CrossRefGoogle Scholar
  33. 33.
    G. H. Gilmer, Mat. Sci. Engrg., 65, 15 (1984).CrossRefGoogle Scholar
  34. 34.
    M. J. Aziz, Appi. Phys. Lett., 43, 552 (1983).CrossRefGoogle Scholar
  35. 35.
    M. J. Aziz, in Science and Technology of Rapidly Quenched Alloys, M. Tenhover, W. L. Johnson, and L. E. Tanner, eds., Materials Research Society, Pittsburgh, Pennsylvania, 1987, p. 25.Google Scholar
  36. 36.
    R. Trivedi and W. Kurz, Metall. Trans. A. 21A, 1311 (1990).Google Scholar
  37. 37.
    P. Baeri, G. Foti, J. M. Poate, S. U. Campisano, and A. G. Cullis, Appi. Phys. Lett. 38, 800 (1981).CrossRefGoogle Scholar
  38. 38.
    C. W. White, S. R. Wilson, B. R. Appleton, and F. W. Young, Jr., J. Appi. Phys. 51, 738 (1980).CrossRefGoogle Scholar
  39. 39.
    C. W. White, B. R. Appleton, B. Stritzker, D. M. Zehner, and S. R. Wilson, in Laser and Electron-Beam Solid Interactions and Materials Processing, J. F. Gibbons, L. D. Hess, and T. W. Sigmon, eds., North Holland, New York, 1981, p. 59.Google Scholar
  40. 40.
    M. J. Aziz, J. Y. Tsao, M. O. Thompson, P. S. Peercy, and C. W. White, Phys. Rev. Lett. 56, 2489 (1986).CrossRefGoogle Scholar
  41. 41.
    P. Baeri, J. M. Poate, S. U. Campisano, G. Foti, E. Rimini, and A. G. Cullis, Appi. Phys. Lett., 37, 912 (1980).CrossRefGoogle Scholar
  42. 42.
    M. Cohen and M. C. Flemings, in Rapidly Solidified Crystalline Alloys, S. K. Das, B. H. Kear, and C. M. Adam, eds., Metall. Soc., Warrendale, Pennsylvania, 1985, p. 3.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • A. Kar
    • 1
  • J. Mazumder
    • 2
  1. 1.Center for Research and Education in Optics and Lasers (CREOL) Mechanical and Aerospace engineering DepartmentUniversity of Central FloridaOrlandoUSA
  2. 2.Center for Laser-Aided Materials Processing (CLAMP) Mechanical and Industrial Engineering DepartmentUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations