Laser Chemical Vapor Deposition of Titanium Nitride and Process Diagnostics With Laser Induced Fluorescence Spectroscopy
Chapter
Abstract
With gaseous precursors of TiCl4, H2, and N2, titanium nitride (TiN) films have been deposited on Ti-6A1-4V alloy substrates by a cw CO2 laser chemical vapor deposition (LCVD) process. Transient Ti atomic concentration above the substrate is measured by laser induced fluorescence (LEF) spectroscopy. Surface temperature during deposition is obtained by multi-wavelength pyrometry. Stylus profilometry and Auger electron spectroscopy (AES) yield film growth rates and compositions. Relationships between the growth rate and TiCl4, H2, and N2 partial pressures are established, from which the rate-controlling reactions and activation energy are obtained.
Keywords
Auger Electron Spectroscopy Laser Induce Fluorescence Titanium Nitride Laser Chemical Vapor Deposition Laser Induce Fluorescence Spectroscopy
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Peterson, J. R. (1974) J. Vac. Sei. Technol. 11, 715CrossRefGoogle Scholar
- 2.Kato, A. and Tamari, N. (1975) J. Cryst. Growth 29, 55CrossRefGoogle Scholar
- 3.Cao, Z. R., Du, Y. S., and Miao, H. F., (1989) Surf. Engr. 5, 315Google Scholar
- 4.Tsao, C. J., Chen, E. B., and Miao, H. F. (1986) Trans. Inst. Mining Met. 95, 63Google Scholar
- 5.Nakanishi, N., Mori, S., and Kato, E. (1990) J. Electrochem. Soc. 137, 322CrossRefGoogle Scholar
- 6.You, M. S., Nakanishi, N., and Kato, E. (1991) J. Electrochem. Soc. 138, 1394CrossRefGoogle Scholar
- 7.Sadahiro, T., Cho, T., and Yamaya, S. (1977) J. Jpn. Inst. Met. 41, 542Google Scholar
- 8.Yoshikawa, N., Aikawa, H., and Kikuchi, A. (1992) J. Jpn. Inst. Met. 56, 1132Google Scholar
- 9.Takahashi, T. and Suzuki, Y. (1974) J. Jpn. Inst. Chem. 30, 1043Google Scholar
- 10.Kim, M. S. and Chun, J. S. (1983) Thin Solid Films 107, 129CrossRefGoogle Scholar
- 11.Conde, O., Mariano, J., Silvestre, A. J., and Vilar, R. (1990) in H. W. Bergmann and R. Kupfer (eds.), Proc. 3rd European Conf on Laser Treatment of Materials, Sprechsal, Coburg, 145Google Scholar
- 12.Conde, O., Ferreira, M. L. G., Hochholdinger, P., Silvestre, A. J., and Vilar, R. (1992) Appl. Surf. Sei. 54, 130CrossRefGoogle Scholar
- 13.Conde, O., Kar, A., and Mazumder, J. (1992) J. Appl. Phys. 72, 754CrossRefGoogle Scholar
- 14.Hopfe, V., Tehel, A., Baier, A., and Scharsig, J. (1992) Appl. Surf. Sei. 54, 78CrossRefGoogle Scholar
- 15.Martin, G. A., Fuhr, J. R., and Wiese, W. L. (1988) J. Phys. Chem. Ref. Data 17, Suppl. 3, 85Google Scholar
- 16.Salih S. and Lawler, J. E. (1990) Astron. Astrophys. 239, 407Google Scholar
- 17.Lowe, R. M. and Hannaford, P. (1991) Z. Phys. D - Atoms, Molecules and Clusters 21, 205CrossRefGoogle Scholar
- 18.Forsberg, P. (1991) Physics Scripta 44, 446CrossRefGoogle Scholar
- 19.Azer, M. N. (1994) Ph. D. Thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois, USAGoogle Scholar
- 20.Chen, X., Azer, M. N., and Mazumder, J. (1993) in J. Mazumder and K. Mukherjee (eds.) Laser and Materials Processing IV, TMS, Warrendale, PennsylvaniaGoogle Scholar
- 21.Piepmeier, E. H. (1972) Spectrochimica Acta 27B, 431Google Scholar
- 22.Daily, J. W. (1978) Appl Opt. 17, 225CrossRefGoogle Scholar
- 23.Davis, K. A., Brezinsky, K., and Glassman, I. (1991) Combustion Sci. Tech. 77, 171CrossRefGoogle Scholar
- 24.Eckbreth, A. C. (1988) Laser Diagnostics for Combustion Temperature and Species, Energy and Engr. Sci. Ser. 7, Abacus, Tunbridge Wells, UK.Google Scholar
- 25.Breiland, W. G., Coltrin, M. E., and Ho, P. J. (1986) Appl. Phys. 59, 3267CrossRefGoogle Scholar
Copyright information
© Kluwer Academic Publishers 1996