Symmetries of sprays and admissible Lagrangians

  • J. Szenthe
Part of the Mathematics and Its Applications book series (MAIA, volume 350)

Abstract

Some fundamental concepts and basic facts are summarized first for convenience and in order to fix the terminology, also to do slight adjustments of some standard concepts with respect to their subsequent applications. Smooth will mean class C°° in what follows.

Keywords

Lagrangian Function Integral Curve Tubular Neighborhood Integral Curf Zero Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bochner, S. and Montgomery, D.: Locally compact groups of differentiable transformations. Ann. of Math. 47(1947), 639–653.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Busemann H.: On normal coordinates in Finsler spaces. Math. Ann. 129(1955), 417–423.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Chevalley, C. and Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Amer. Math. Soc. 63(1948), 85–124.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Dugundji, J.: Topology. Boston, 1966.Google Scholar
  5. 5.
    Godbillon, C.: Géometrié Différentielle et Mécanique Analytique. Paris, 1969.Google Scholar
  6. 6.
    Gromoll, D., Klingenberg, W., Meyer, W.: Riemannsche Geometrie im Grossen. Berlin, Heidelberg, New York, 1968.Google Scholar
  7. 7.
    Morandi, G., Ferrario, C., Lo Vecchio, G., Marmo, G., Rubano, C.: The inverse problem in the calculus of variations and the geometry of the tangent bundle. Physics Reports 188(1990), 147–284.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Szenthe J.: Lagrangians and sprays. Ann. Univ. Sci. Budapest. 35(1992) 103–107.MathSciNetMATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • J. Szenthe
    • 1
  1. 1.Department of GeometryEötvös UniversityBudapestHungary

Personalised recommendations