Quinolone antibacterials

  • Scott L. Dax
Chapter

Abstract

One of the most promising and vigorously pursued areas of contemporary anti-infective chemotherapy is that of the quinolone antibacterials. Broad spectrum, potent activity is available from a relatively simple molecular nucleus which is amenable to many structural modifications. Unlike antibiotics which originate from a natural source such as a fungi or a mold, the quinolone antibacterials are purely synthetic in origin.

Keywords

Antibacterial Activity Nalidixic Acid Quinolone Resistance gyrB Gene Oxolinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  1. C. Siporin, C.L. Heifetz and J.M. Domagala (Eds) (1990)The New Generation of Quinolones Marcel Dekker, New York.Google Scholar
  2. J.S. Wolfson and D.C. Hooper (Eds) (1989)The Quinolones American Society for Microbiology, Washington, D.C.Google Scholar
  3. V.T. Andriole (Ed.) (1988)The Quinolones Academic Press, San Diego, CA.Google Scholar
  4. N.R. Cozzarelli and J.C. Wang (Eds) (1990)DNA Topology and Its Biological EffectsCold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  5. H. Neu (1992) ‘Quinolone antibacterial agents’,Annu. Rev. Med. 43465.CrossRefGoogle Scholar
  6. D.C. Hooper and J.S. Wolfson (1991) ‘Fluoroquinolone antimicrobial agents’,New England J. Med. 324384.CrossRefGoogle Scholar
  7. D.T.W. Chu and P.B. Fernandes (1990) ‘Quinolone antibacterial agents’, inAdvances in Drug ResearchVol. 21, B. Testa (Ed.) Academic Press, New York, pp. 42–144.Google Scholar
  8. S. Radl (1990) ‘Structure-Activity Relationships in DNA Gyrase Inhibitors’,Pharm. Ther. 48, 1.CrossRefGoogle Scholar
  9. D.T.W. Chu and P.B. Fernandes (1989) ‘Structure-activity relationships of the fluoroquinolones’,Antimicrob. Agents Chemother. 33131.Google Scholar
  10. S. Radl and D. Bouzard (1992) ‘Recent Advances in the Synthesis of Antibacterial Quinolones’,Heterocycles 342143.Google Scholar
  11. R. Albrecht (1977) ‘Development of antibacterial agents of the nalidixic acid type’,Prog. Drug Res. 219.Google Scholar
  12. J.C. Wang (1985) ‘DNA topoisomerases’,Annu. Rev. Biochem. 54665.CrossRefGoogle Scholar
  13. K. Drlica (1984) ‘Biology of bacterial deoxyribonucleic acid topoisomerases’,Microbiol. Rev. 48273.Google Scholar
  14. N. Cozzarelli (1980) ‘DNA gyrase and the supercoiling of DNA’,Science 207953.CrossRefGoogle Scholar
  15. M. Geliert (1981) ‘DNA topoisomerases’,Annu. Rev. Biochem. 50879.CrossRefGoogle Scholar
  16. L.L. Shen, L.A. Mitscher, P.N. Sharma, J.J. O’Donnell, D.W.T. Chu, CS. Copper, T. Rosen and A.G. Pernet (1989) ‘Mechanism of inhibition of DNA gyrase by quinolone antibacterials: a cooperative drug-DNA binding model’,Biochemistry 283886.CrossRefGoogle Scholar
  17. L.A. Mitscher, B.D. Davis, T. Ichikawa and K. Maeda (1987) ‘Horizons on antibiotic research’ fromProceedings of the Symposium Dedicated to the Late Professor Hamao Umezawa on the 25th and 40th Anniversary of the Institute of Microbial Chemistry and the Japan Antibiotics Research AssociationNov. 25–26, Tokyo, Japan, 166–193.Google Scholar
  18. D.C. Hooper and J.S. Wolfson (1988) ‘Mode of action of the quinolone antimicrobial agents’,Rev. Infectious Diseases 10(S1), S14.Google Scholar
  19. J.S. Wolfson and D.C. Hooper (1985) ‘The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activityin vitro’ Antimicrob. Agents Chemother. 28, 581.Google Scholar
  20. L.L. Shen and A.G. Pernet (1985) ‘Mechanism of inhibition of DNA gyrase by analogues of nalidixic acid: the target of the drugs is DNA’,Proc. Natl. Acad. Sei. USA 82307.CrossRefGoogle Scholar
  21. D.S. Horowitz and J.C. Wang (1987) ‘Mapping the active site tyrosine ofEscherichia coliDNA gyrase’,J. Biol. Chem. 2625339.Google Scholar
  22. C.J.R. Willmott and A. Maxwell (1993) ‘A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complex’Antimicrob. Agents Chemother. 37126.Google Scholar
  23. G.W. Kaatz, S.M. Seo and CA. Ruble (1993) ‘Efflux-mediated fluoroquinolone resistance inStaphylococcus aureus’, Antimicrob. Agents Chemother. 371086.Google Scholar
  24. D.B. Wigley, G.J. Davies, E.J. Dodson, A. Maxwell, and G. Dodson (1991) ‘Crystal structure of an N-terminal fragment of the DNA gyrase B protein,Nature 351624.CrossRefGoogle Scholar
  25. CD. Lima, J.C. Wang and A. Mondragon (1994) ‘Three-dimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase I’,Nature 367138.CrossRefGoogle Scholar
  26. C.Hubschwerlen, P. Pflieger, J.-L. Specklin, K. Gubernator, H. Gmunder, P. Ahgehrn and I. Kompis (1992) ‘Pyrimido[l,6a]benzimidazoles: a new class of DNA gyrase inhibitors’,J. Med. Chem. 351385.Google Scholar

Copyright information

© Chapman & Hall 1997

Authors and Affiliations

  • Scott L. Dax
    • 1
  1. 1.Research InstituteThe R.W Johnson PharmaceuticalSpring HouseUSA

Personalised recommendations