Conserving and Cultivating Agricultural Genetic Diversity: Transcending Established Divides



Did we wait for a discussion on conserving biodiversity before actually doing so? Clearly no: various categories of farmers were conserving biodiversity well before scientists formulated the concept and became a global issue. The work of Vavilov in the 1930s and later that of Harlan in 1951, were seminal in their discussion on centers of origin and non centers of domestication. They raised awareness in the scientific community and also among influential agricultural sector groups of the existence and importance of feral or domesticated wild genetic resources. The fear of genetic erosion continues to prevail in debates on different and sometimes competing intellectual approaches for conserving agricultural genetic diversity, i.e., to prevent its loss and to maintain its availability. Private initiatives, governmental measures, non governmental actions, regional, national, or international actions for conservation have gradually appeared since World War II. They have encompassed both ex-situ conservation in different forms and in-situ conservation. In this chapter, we highlight the complexity and structural inequalities between mechanisms to conserve agricultural genetic diversity. It makes emphatically clear that the time has come for a paradigm shift: we have to stop thinking of in-situ or ex-situ in a binary way and try to contrast or combine the two approaches (Santonieri et al. 2011). The idea of cultivating biodiversity to transform agriculture appears already well advanced given the numerous debates on ensuring access to and control of agricultural genetic diversity. This shows a contrario that the part of biodiversity judged to be without economic value risks being inadequately conserved. We start with a historical analysis of the implementation of conservation mechanisms. We then take up the international political strategies that govern conservation and mobilization of agricultural genetic diversity, their shortcomings, and possible solutions. Finally, we describe the advances in the knowledge of this genetic diversity and its conservation, and the reasons for transcending the in-situ–ex-situ divide. We ultimately argue that we must rather define objectives of conserving/protecting agricultural biodiversity in terms of geographic levels (local, regional, North/South, global), social- management levels (individuals, human societies, mankind), and socio economic levels (individual income, local market, global trade). These objectives must lead to a real transformation of agriculture. An appropriate mix of conservation tools should be chosen in consultation with the actors involved in the maintenance of comparable biological objects.


Intellectual Property Genetic Resource Monetary Incentive Genetic Erosion Sterile Male Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Almeida, P., & Cordeiro, A. (2001). Sistema de seguridade da semente da paixão (p. 120). Rio de Janeiro: Estratégias comunitárias de conservação de variedades locais no semi-árido.Google Scholar
  2. Altieri, M. A. (1987). Peasant agriculture and the conservation of crop and wild plant resources. Conservation Biology, 1(1), 49–58.CrossRefGoogle Scholar
  3. Altieri, M. A. (1992). Agroecological foundations of alternative agriculture in California. Agriculture, Ecosystems and Environment, 39, 23–53.CrossRefGoogle Scholar
  4. Andersen, R. (2008). Governing agrobiodiversity: Plant genetics and developing countries (p. 420). Aldershot: Ashgate.Google Scholar
  5. Aoki, K. (2009). Free seeds, not free beer: Participatory plant breeding, open source seeds, and acknowledging user innovation and agriculture. Fordham Law Review, 77(5), 2275–2300.Google Scholar
  6. Bazile, D. (2006). State-farmer partnerships for seed diversity in Mali. Gatekeeper series 127 (p. 22). London: IIED.Google Scholar
  7. Bazile, D., Dembélé, S., Soumaré, M., & Dembele, D. (2008). Utilisation de la diversité variétale du sorgho pour valoriser la diversité des sols au Mali. Cahiers Agricultures, 17(2), 86–94.Google Scholar
  8. Beck, R. (2010). Farmers’ rights and open source licensing. Arizona Journal of Environmental Law and Policy, 1(2). Marquette Law School Legal Studies Paper no. 10–28, SSRN. Retrieved May 13, 2013, from
  9. Brahy, N., & Louafi, S. (2004). La convention sur la diversité biologique à la croisée de quatre discours. Les rapports de l’Iddri, 4.Google Scholar
  10. Brockway, L. (1988). Plant science and colonial expansion: The botanical chess game. In J. R. Kloppenburg (Ed.), Seeds and sovereignty: The use and control of plant genetic resources. Durham: Duke University Press.Google Scholar
  11. Brush, S. B. (1989). Rethinking crop genetic resource conservation. Conservation Biology, 3(1), 19–29.CrossRefGoogle Scholar
  12. Burel, F., & Baudry, J. (1999). Écologie du paysage. Concepts, méthodes et applications (p. 359). Paris: Tech et Doc.Google Scholar
  13. Cassier, M. (2002). Bien privé, bien collectif et bien public à l’age de la génomique. Revue internationale des sciences sociales, 1(171), 95–110.CrossRefGoogle Scholar
  14. Chaïr, H., Cornet, D., Deu, M., Baco, M. N., Agbangla, A., Duval, M. F., et al. (2010). Impact of farmer selection on yam genetic diversity. Conservation Genetics, 11(6), 2255–2265.CrossRefGoogle Scholar
  15. Chevassus-au-Louis, B., & Bazile, D. (2008). Cultiver la diversité. Cahiers Agricultures, 17(2), 77–78.Google Scholar
  16. Chiarolla, C., Louafi, S., & Schloen, M. (2012). An analysis of the relationship between the Nagoya protocol and instruments related to genetic resources for food and agriculture and farmers’ rights. In M. Buck, E. Morgera, & E. Tsoumani (Eds.), The 2010 Nagoya protocol on access and benefit-sharing: Implications for international law and implementation challenges. Leiden, Boston: Brill Academic Publisher.Google Scholar
  17. Coase, R. (1974). The lighthouse in economics. Journal of Law and Economics, 17(2), 357–376.Google Scholar
  18. Collins, W. W., & Qualset, C. O. (Eds.). (1999). Biodiversity in agroecosystems. Boca Raton: CRC Press LLC.Google Scholar
  19. Dale, V. H., & Polasky, S. (2007). Measures of the effects of agricultural practices on ecosystem services. Ecological Economics, 64, 286–296.CrossRefGoogle Scholar
  20. Dedeurwaerdere, T. (2004). Bioprospection, gouvernance de la biodiversité et mondialisation. De l’économie des contrats à la gouvernance réflexive. Carnet du CPDR, 104.Google Scholar
  21. Dedeurwaerdere, T., Broggiato, A., Louafi, S., Welch, E., & Batur, F. (2012). Governing global scientific research commons under the Nagoya protocol. In M. Buck, E. Morgera, & E. Tsoumani (Eds.), The 2010 Nagoya protocol on access and benefit-sharing: Implications for international law and implementation challenges. Leiden, Boston: Brill Academic Publisher.Google Scholar
  22. Deu, M., Rattunde, H. F. W., & Chantereau, J. (2006). A global view of genetic diversity in cultivated sorghums using a core collection. Genome, 49(2), 168–180.PubMedGoogle Scholar
  23. Dounias, E. (1996). Sauvage ou cultivé? La paraculture des ignames sauvages par les pygmées Baka du Cameroun. In: C. M. Hladik, A. Hladik, H. Pagezy, O. F. Linares, G. J. A. Koppert, & A. Froment, (Eds.), L’alimentation en forêt tropicale : interactions bioculturelles et perspectives de développement. 2. Bases culturelles des choix alimentaires et stratégies de développement (pp. 939–960). Paris: UNESCO (L’homme et la biosphère).Google Scholar
  24. Dutfield, G. (2011). Food, biological diversity and intellectual property: The role of the international union for the protection of new varieties of plants (UPOV). Intellectual Property Issue Paper no. 9 (p. 24). New York: Quaker United Nations Office, Global Economic Issue Publications.Google Scholar
  25. Elfstrand, S. Malmer, P., & Skagerfält, B. (2011). Strengthening agricultural biodiversity for smallholder livelihoods. What knowledge is needed to overcome constraints and release potentials? Report to Hivos and Oxfam Novib, background document for the development of a knowledge programme, The resilience and development programme (SwedBio). Stockholm: Stockholm Resilience Centre.Google Scholar
  26. Francis, C. A. (Ed.). (1986). Multiple cropping systems. New York: Macmillan.Google Scholar
  27. Frey, B., & Jegen, R. (2001). Motivation crowding theory. Journal of Economic Surveys, 15(5), 589–611.CrossRefGoogle Scholar
  28. Garrison, Wilkes H. (1988). Plant genetic resources over ten thousand years: From handful of seed to the crop-specific mega-gene banks. In J. R. Kloppenburg (Ed.), Seeds and sovereignty: The use and control of plant genetic resources. Durham: Duke University Press.Google Scholar
  29. Goëschl, T., & Swanson, T. (2002). The social value of biodiversity for R&D. Environmental and Resource Economics, 22(4), 477–504.CrossRefGoogle Scholar
  30. Guillaumet, J. -L. (1996). Les plantes alimentaires des forêts humides intertropicales et leur domestication: Exemples africains et américains. In C. M. Hladik, A. Hladik, H. Pagezy, O. F. Linares, G. J. A. Koppert, & A. Froment (Eds.), L’alimentation en forêt tropicale: Interactions bioculturelles et perspectives de développement. 1. Les ressources alimentaires: production et consommation (pp. 121–130). Paris: UNESCO (L’Homme et la biosphère).Google Scholar
  31. Halewood, M., Lopez Noriega, I., & Louafi, S. (Eds.). (2012). Crop genetic resources as a global commons (pp. 311–328). London: Earthscan.Google Scholar
  32. Hamon, P., Zoundjihekpon, J., Dumont, R., & Tio-Touré, B. (1992). La domestication de l’igname (Dioscorea sp.): Conséquence pour la conservation des ressources génétiques. In: Complexe d’espèces, flux de gènes et ressources génétiques des plantes, Colloque international en hommage à Jean Pernès, January 8–10, Paris-XI: BRG.Google Scholar
  33. Harlan, J. R. (1971). Agricultural origins: Centers and non-centers. Science, 174, 468–474.PubMedCrossRefGoogle Scholar
  34. Hawkes, J. G. (1985). Plant genetic resources: The impact of the international agricultural research centres, CGIAR study paper no. 3. Washington: World Bank.Google Scholar
  35. Heller, M. A., & Eisenberg, R. (1998). Can patents deter innovation? The anticommons in biomedical research. Science, 280(5364), 698–701.PubMedCrossRefGoogle Scholar
  36. Hladik, A., Bahuchet, S., Ducatillion, C., & Hladik, C. M. (1984). Les plantes à tubercules de la forêt d’Afrique centrale. Revue d’écologie la Terre et la vie, 39, 249–290.Google Scholar
  37. Jackson, L. E., Pascual, U., & Hodgkin, T. (2007). Biodiversity in agricultural landscapes: investing without losing interest. Agriculture, Ecosystems and Environment, 121(3), 196–210.CrossRefGoogle Scholar
  38. Jackson, L., von Noordwijk, M., Bengtsson, J., Foster, W., Lipper, L., Pulleman, M., et al. (2010). Biodiversity and agricultural sustainagility: From assessment to adaptive management. Current Opinion in Environmental Sustainability, 2, 80–87.CrossRefGoogle Scholar
  39. Jarvis, D. I., Padoch, C., & Cooper H. D. (2007). Managing bodiversity in agricultural ecosystems. New York: Columbia University Press Book.Google Scholar
  40. Kloppenburg, J. (1988). First the seed: The political economy of plant biotechnology. Cambridge: Cambridge University Press.Google Scholar
  41. Kouressy, M., Bazile, D., Vaksmann, M., Soumaré, M., Doucouré, C. O. T., & Sidibé, A. (2003). La dynamique des agroécosystèmes: un facteur explicatif de l’érosion variétale du sorgho: le cas de la zone Mali-sud. In P. Dugué & P. Jouve (Eds.), Organisation spatiale et gestion des ressources et des territoires ruraux: Actes du colloque international (pp. 42–50). February 25–27, 2003. Montpellier: Cnearc-Sagert.Google Scholar
  42. Kouressy, M., Traoré, S. B., Vaksmann, M., Grum, M., Maikano, I., Soumaré, M., et al. (2008). Adaptation des sorghos du Mali à la variabilité climatique. Cahiers Agricultures, 17, 95–100.Google Scholar
  43. Leclerc, C. (Ed.). (2009). Reproduire des plantes, reproduire une société. Structuration sociale de la diversité. Rapport scientifique Atp 06/01. Montpellier: Cirad.Google Scholar
  44. Leclerc, C., & Coppens, d’ Eeckenbrugge G. (2012). Social organization of crop genetic diversity. The G × E × S interaction model. Diversity, 4, 1–32.CrossRefGoogle Scholar
  45. Louafi, S. (2012). Collective action challenges in the implementation of the multilateral system of the international treaty: What roles for the CG centres? In M. Halewood, I. Lopez Noriega, & S. Louafi (Eds.), Crop genetic resources as a global commons. London: Earthscan.Google Scholar
  46. Marshall, D. R. (1977). The advantages and hazards of genetic homogeneity. Annual Review of Plant Pathology, 27, 77–94.Google Scholar
  47. Parry, B. (2004). Trading the genome. New York: Columbia University Press.Google Scholar
  48. Piraux, M., Silveira, L., Diniz, P., & Duque, G. (2012). Transição agroecológica e inovação socioterritorial. Estudos Sociedade e Agricultura, 20(1), 5–29. (UFRRJ, Rio de Janeiro).Google Scholar
  49. Pistorius, R. (1997). Scientists, plants and politics: A history of plant genetic movement. Rome: International Plant Genetic Research Institute.Google Scholar
  50. Rattunde, F., Vom Brocke, K., Weltzien, E., & Haussmann, B. I. G. (2009). Selection methods 4. Developing open-pollinated varieties using recurrent selection methods. In S. Ceccarelli, E. P. Guimaraes, & E. Weltzien (Eds.), Plant breeding and farmer participation (pp. 259–273). Rome: FAO.Google Scholar
  51. Robson, J. P. (2007). Local approaches to biodiversity conservation: Lessons from Oaxaca, southern Mexico. International Journal of Sustainable Development, 10, 267–286.CrossRefGoogle Scholar
  52. Sabourin, E., Silveira, L., & Sidersky, P. (2004). Production d’innovation en partenariat et agriculteurs expérimentateurs au Nordeste du Brésil. Cahiers Agricultures, 13, 203–210.Google Scholar
  53. Sabourin, E., Duque, G., Diniz, P. C. O., Oliveira, M. S. L., & Florentino, G. L. (2005). Reconnaissance publique des acteurs collectifs de l’agriculture familiale au Nordeste. Cahiers Agricultures, 14(1), 111–116.Google Scholar
  54. Sagnard, F., Barnaud, A., Deu, M., Barro, C., Luce, C., Billot, C., Rami, J -F., Bouchet, S., Dembélé, D., Pomiès, V., Calatayud, C., Rivallan, R., Joly, H., Vom Brocke, K., Touré, A., Chantereau, J., Bezançon, G., & Vaksmann, M. (2008). Analyse multiéchelle de la diversité génétique des sorghos: compréhension des processus évolutifs pour la conservation in situ. Cahiers Agricultures, 17(2), 114–121.Google Scholar
  55. Santonieri, L., Madrid, D., Salazar, E., Martinez, E. A., Almeida, M., Bazile, D., & Emperaire, L. (2011). Analyser les réseaux de circulation des ressources phytogénétiques: une voie pour renforcer les liens entre la conservation ex situ et locale. In: Les ressources génétiques face aux nouveaux enjeux environnementaux, économiques et sociétaux. Actes du colloque FRB (pp. 76–78). September 20–22, 2011. Montpellier: FRB. Retrieved May 13, 2013, from
  56. Scherr, S. J., & McNeely, J. A. (2008). Biodiversity conservation and agricultural sustainability: Towards a new paradigm of “eco agriculture” landscapes. Philosophical Transactions of the Royal Society B, 363, 477–494.CrossRefGoogle Scholar
  57. Schloen, M., Louafi, S., & Dedeurwaerdere, T. (2011). Access and benefit-sharing for genetic resources for food and agriculture. Current use and exchange practices, commonalities, differences and user community needs. Report from a multi-stakeholder expert dialogue, background study paper no. 59 (p. 42). Rome: Food and Agriculture Organization.Google Scholar
  58. Shapiro, C. (2000). Navigating the patent thicket: Cross licenses, patent pools, and standard-setting. In A. Jaffe, J. Lerner, & S. Stern (Eds.), Innovation policy and the economy (pp. 119–150). Cambridge: MIT Press.Google Scholar
  59. Shumann, G. L. (1991). Plant diseases are shifting enemies. American Scientist, 35, 321–350.Google Scholar
  60. Soumaré, M., Kouressy, M., Vaksmann, M., Maikano, I., Bazile, D., Traoré, P. S., Traoré, S. B., Dingkuhn, M., Touré, A., Vom Brocke, K., Some, L., & Barro-Kondombo, C. P. (2008). Prévision de l’aire de diffusion des sorghos photopériodiques en Afrique de l’Ouest. Cahiers Agricultures, 17(2), 160–164.Google Scholar
  61. Swanson, T., & Goëschl, T. (2000). Property rights issues involving plant genetic resources: implications of ownership for economic efficiency. Ecological Economics, 32(2000), 75–92.CrossRefGoogle Scholar
  62. Swinton, S. M., Lupi, F., Robertson, G. P., & Hamilton, S. K. (2007). Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecological Economics, 64, 245–252.CrossRefGoogle Scholar
  63. Tostain, S., Chaïr, H., Scarcelli, N., Noyer, J. L., Agbangla, C., Marchand, J. L., & Pham, J. -L. (2005). Diversité, origine et dynamique évolutive des ignames cultivées Dioscorea rotundata Poir. au Bénin. In: Les Actes du Colloque national du BRG : Un dialogue pour la diversité génétique, 5 (pp. 465–482). Paris: BRG.Google Scholar
  64. Vallaud, M. (2011). Impact du développement des marchés de consommation du mil et du sorgho sur la diversité intraspécifique de ces deux céréales: le cas de trois villages situés dans la région de Sikasso au Mali. Rapport de stage de seconde année (p. 77). Rennes: Agrocampus Ouest et Cirad Moisa, IER, Amedd.Google Scholar
  65. Vallaud, M., Dury, S., & Coulibaly, H. (2011). Market access of small-scale farms and biodiversity management of food crops. The case of sorghum and pearl millet in Mali. 5 e Journées de recherches en sciences sociales, December 8–9, 2011. Dijon: Cirad, SFER Inra.Google Scholar
  66. Vom, Brocke K., Trouche, G., Zongo, S., Abdramane, B., Barro-Kondombo, C. P., Weltzien, E., et al. (2008). Création et amélioration de populations de sorgho à base large avec les agriculteurs au Burkina Faso. Cahiers Agricultures, 17(2), 146–153.Google Scholar
  67. Wale, E., Drucker, A. G., & Zander, K. K. (Eds.). (2011). The economics of managing crop diversity on-farm: Case studies from the genetic resources policy initiative. London: Earthscan.Google Scholar
  68. Zhu, Y., Chen, H., Fan, J., Wang, Y., Li, Y., Chen, J., et al. (2000). Genetic diversity and disease control in rice. Nature, 406(6797), 718–722.PubMedCrossRefGoogle Scholar

Copyright information

© Éditions Quæ, 2013 2013

Authors and Affiliations

  • Sélim Louafi
    • 1
  • Didier Bazile
    • 2
  • Jean-Louis Noyer
    • 3
  1. 1.Department BiosAgap Joint Research Unit (Genetic Improvement and Adaptation of Mediterranean and Tropical Plants)—CiradMontpellierFrance
  2. 2.Department ESGreen Internal Research Unit (Renewable Resources Management and Environment)—CiradMontpellierFrance
  3. 3.Department BiosCiradMontpellierFrance

Personalised recommendations