The Diversity of Living Organisms: The Engine for Ecological Functioning



The diversity of living organisms has long been the mainstay of agricultural activity and its innovations. However, since the late nineteenth century, particularly in industrialized countries, increases in yields have been based on radically new technologies which deny the biological reality of agriculture and end up artificializing environments. This greatly intensified agriculture is primarily based on fossil fuels (mainly petroleum). It now finds itself at an impasse because of its impacts on ecosystems and the dramatic increase in the prices of inputs and energy. Social inequalities and massive rural exoduses that it has caused are further reasons for concern. Scientists, politicians and NGOs have striven, mainly over the last 20 years, to come up with alternative approaches for developing countries to overcome these energy, economic and environmental crises, and in order to ensure food security for the most vulnerable populations. There is now a widespread conviction that these countries must develop the capacity to ensure sustainable food security. The intensification of their production is therefore essential but has to be based on new approaches. Often grouped under the all-encompassing term ‘agroecology’, these new approaches rely on both the most modern advances in agricultural sciences and the traditional know-how of rural populations.


  1. Abel, S. (2007). Le Laos soumis à la dictature de l’hévéa chinois. Libération, 22 May 2007. Retrieved April 5, 2013 from
  2. Altieri, M. A., Funes-Monzote, F. R., & Petersen, P. (2011). Agroecologically efficient agricultural systems for smallholder farmers: contribution to food sovereignty. Agronomy for a Sustainable Development, 32(1), 1–13.CrossRefGoogle Scholar
  3. Atlan, H. (1999). La fin du « tout génétique » ? Vers de nouveaux paradigmes en biologie (91 p), Inra, Sciences en question, Éditions QuaeGoogle Scholar
  4. Atlan, H. (2011). Le vivant post-génomique. Ou qu’est-ce que l’auto-organisation? Paris: Odile Jacob.Google Scholar
  5. Batjes, N. (1999). Management options for reducing CO 2 concentration in the atmosphere by increasing carbon sequestration in the soil. NRP Report no. 410 200 031.Google Scholar
  6. Bernoux, M. (2011). Le stockage de carbone dans les sols: quels processus ? Comment le mesurer ? Séminaire « Sols et politiques publiques » , 20 October 2011, Lyon. Retrieved April 5, 2013 from
  7. Bonneuil, C., Fenzi, M. (2011). Des ressources génétiques à la biodiversité cultivée. La carrière d’un problème public mondial. SAC Revue d’anthropologie des connaissances, 5(2), 206–233.Google Scholar
  8. CBD (Convention on Biological Diversity) (1992). United nations (p. 3). Retrieved April 1, 2013 from
  9. Cohen, I.R., Atlan, H., Efroni, S. (2009). Genetics as explanation: limits to the human genome project. Encyclopedia of Life Sciences [online], December 2009. doi:10.1002/9780470015902.a0005881.pub2.
  10. Commission on Genetic Resources for Food and Agriculture (2010). The second report on the state of the world’s plant genetic resources for food and agriculture. Rome: FAO. Retrieved April 5, 2013 from
  11. Conference of the Parties (1996). COP3 Decision 3/11: Conservation and sustainable use of agricultural biological diversity, 4–15 November, Buenos Aires, Argentina. Retrieved April 5, 2013, from
  12. Conference of the Parties (2000). COP5 Decision V/5: Agricultural biological diversity: Review of phase I of the program of work and adoption of a multi-year work program, 15–26 May, Nairobi, Kenya. Retrieved April 5, 2013, from
  13. Conklin, H. C. (1957). Hanunóo agriculture: A report on an integral system of shifting cultivation in the philippine. FAO: Rome.Google Scholar
  14. De Schutter, O. (2010). Promotion and protection of all human rights, civil, political, economic, social and cultural rights, including the right to development. Report submitted to the Human Rights Council of the United Nations, 16th session, 17 December 2010 (special rapporteur on the right to food).Google Scholar
  15. Demeulenaere, E., Goulet, F. (2012). Du singulier au collectif. Agriculteurs et objets de la nature dans les réseaux d’agricultures alternatives. ENS Cachan. Terrains et travaux, 1(20), 121–138. Retrieved April 5, 2013, from
  16. Ecological Footprint Atlas (2009). Global footprint network, research and standards department. Retrieved April 5, 2013, from
  17. FAO (2008a). New light on a hidden treasure. International year of the potato 2008. End-of-year report, 148 p. (p. 14).Google Scholar
  18. FAO (2008b). The state of the world’s animal genetic resources for food and agriculture. Commission on Genetic Resources for Food and Agriculture. Retrieved April 5, 2013, from
  19. FAO (2010). Biodiversity. Biodiversity for a world without hunger. Retrieved April 5, 2013, from
  20. FAO (Food and Agriculture Organization of the United Nations) (1996). Lessons from the green revolution: Towards a new green revolution. Technical background document. World Food Summit, 13–17 November, Rome, Italy.Google Scholar
  21. Feldmann, P. (2008a). Interactions between human activities and biodiversity in the heart of overseas sustainable development: Stakes for research in managed ecosystems. In: L’Union européenne et l’outre-mer. Stratégies face au changement climatique et à l’érosion de la biodiversité, IUCN/région Réunion/ONERC/État français, la Réunion.Google Scholar
  22. Feldmann, P. (2008b). Biodiversité et agriculture: Services écologiques et impacts des changements globaux. In: Cycle de conférences 2008. Relever le défi de la biodiversité: l’agriculture durable (Ifore, éd.), Ifore-MNHN, Paris, France.Google Scholar
  23. Feldmann, P., Côte, F., Fernandes, P., Jannoyer, M., Langlais, C. (2007). Biodiversité et agriculture aux Antilles. Antilles Agriculture.Google Scholar
  24. François, J.-L., Tissier, J., Legoupil, J.-C., Maraux, F. (2011). Agriculture de conservation et intensification écologique des exploitations familiales tropicales. Quel partenariat entre recherche et développement? (4 p). Cirad-AFD, September 2011.Google Scholar
  25. Franklin, J., & Mortensen, D. A. (2011). A comparison of land-sharing and land-sparing strategies for plant richness conservation in agricultural landscapes. Ecological Applications, 22(2), 459–471.Google Scholar
  26. Griffon, M. (2006). Nourrir la planète: pour une révolution doublement verte (456 p). Odile Jacob.Google Scholar
  27. Griffon, M. (2011). Pour des agricultures écologiquement intensives (144 p). L’Aube, Poche Essai.Google Scholar
  28. Heams, T. (2012). Mettons du désordre dans nos idées. Le Monde, tribune Science et Techno (p. 8), 22 September.Google Scholar
  29. Ipcc (2007). Climate change: Impacts, adaptation and vulnerability. Contribution of working group II. IPCC Fourth Assessment Report, Cambridge University Press, Chapter 9.Google Scholar
  30. James, C. (2011). Brief 43: Global status of commercialized biotech/GM crops: 2011. ISAAA Brief no. 43. Ithaca, NY: ISAAA. Retrieved April 5, 2013, from
  31. Le Roux, X., Barbault, R., Baudry, J., Burel, F., Doussan, I., Garnier, E., Herzog, F., Lavorel, S., Lifran, R., Roger-Estrade, J., Sarthou, J.-P., Trommetter, M. (2008). Agriculture et biodiversité. Valoriser les synergies (178 p). Expertise scientifique collective Inra, Editions Quae.Google Scholar
  32. Mazoyer, M., Roudart, L. (2002). Histoire des agricultures du monde: du néolithique à la crise contemporaine (705 p), Seuil.Google Scholar
  33. MEA (Millenium Ecosystems Assessment) (2005). Ecosystems and human well-being: Biodiversity synthesis, MA. Retrieved April 5, 2013, from; see also
  34. Mittermeier, R. A., Goettsch Mittermeier, C. (2005). Megadiversity: Earth’s biologically wealthiest nations (501 p), Cemex.Google Scholar
  35. Paillard, S., Treyer, S., Dorin, B. (2010). Agrimonde. Scénarios et défis pour nourrir le monde en 2050 (296 p), Editions Quae.Google Scholar
  36. Phalan, B., Onial, M., Balmford, A., & Green, R. E. (2011). Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science, 333(6047), 1289–1291. doi:10.1126/science.1208742.PubMedCrossRefGoogle Scholar
  37. Pretty, J. N., Noble, A. D., Bossio, D., Dixon, J., Hine, R. E., Penning de Vries, F. W. T., Morison, J. I. L. (2006). Resource-conserving agriculture increases yields in developing countries. Environmental Science and Technology, 40(4), 1114–1119. doi:10.1021/es051670d.Google Scholar
  38. Pretty, J. N., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9(1), 5–24.CrossRefGoogle Scholar
  39. Ruault, M., Dubarry, M., & Taddei, A. (2008). Re-positioning genes to the nuclear envelope in mammalian cells: Impact on transcription. Trends in Genetics, 24, 574–581.PubMedCrossRefGoogle Scholar
  40. Sastre, C., Breuil, A., Bernard, J.-F., Feldmann, P., Fournet, J. (2007). Les causes de régression de la flore. In: Plantes, milieux et paysages des Antilles françaises: écologie, biologie, identification, protection et usages (pp. 615–620). Mèze: Biotope.Google Scholar
  41. Snoeck, D., Lacote, R., Kéli, J., Doumbia, A., Chapuset, T., Jagoret, P., Gohet, E. (2013). Association of hevea with other tree crops can be more profitable than hevea monocrop during first 12 years. Industrial Crops and Products, 43, 578–586. Retrieved April 5, 2013, from
  42. Volper, S. (2011). Du cacao à la vanille, une histoire des plantes coloniales (144 p). Éditions Quae.Google Scholar
  43. WCMC (World Conservation Monitoring Centre). (1992). Global Biodiversity Assessment. United Nations: Chapman and Hall.Google Scholar
  44. World Bank (2008). World development report 2008: Agriculture for development (30 p). Abridged.Google Scholar

Copyright information

© Éditions Quæ, 2013 2013

Authors and Affiliations

  1. 1.CiradMontpellierFrance
  2. 2.CiradCommunication Service/Office of the Director General in Charge of Research and StrategyMontpellierFrance

Personalised recommendations