Capacities of Remote Sensing for Population Estimation in Urban Areas

  • Julia Kubanek
  • Eike-Marie Nolte
  • Hannes Taubenböck
  • Friedemann Wenzel
  • Martin Kappas
Chapter
Part of the Environmental Hazards book series (ENHA)

Abstract

In the past few decades, devastating earthquakes have caused high social and economic losses in cities. Earthquakes cannot be avoided, but the devastating impacts, especially fatalities, can be minimized through pre-event emergency response planning and preparedness. The development of emergency plans strongly relies on up-to-date population and inventory data. However, existing techniques for population data generation do not meet the requirements of many of today’s dynamic cities. In this context, the importance of remote sensing as a cutting-edge technology for data acquisition in urban areas is increasing. The present study analyzes the capacities and limitations of high resolution optical satellite imagery (IKONOS) for modeling population distribution in the district of Zeytinburnu in Istanbul, Turkey. The results show remote sensing to be an independent, up-to-date and area-wide data source. The use of remote sensing facilitates a mechanism to provide necessary quantitative information on urban morphology and population distribution in a fast and accurate way. The generated data do not have the quality of cadastral data sets but they meet the requirements of identifying bottlenecks, highly risky zones, etc. and can serve as a base for decision making.

Keywords

Buildings (built-up area, floor numbers, inventory, occupancy, residential living space, usable space) Earthquakes Geographic Information System (GIS) IKONOS Istanbul Population Spatial distribution Modeling Remote sensing Satellite imagery Urban areas Zeytinburnu 

References

  1. Al-Garni AM (1995) Mathematical predictive models for population estimation in urban areas using space products and GIS technology. Math Comput Model 22:95–107. doi:10.1016/0895-7177(95)00104-ACrossRefGoogle Scholar
  2. Almeida C, Souza I, Durand AC, Pinho C, Pereira M, Feitosa R (2007) Multilevel object-oriented classification of Quickbird images for urban population estimates. In: Samet H, Schneider M, Shahabi C (eds) Proceedings of the 15th International Symposium on Advances in Geographic Information Systems. New York. USA. doi:10.1145/1341012.1341029Google Scholar
  3. Ambraseys N, Finkel C (1991) Long-term seismicity of Istanbul and of the Marmara Sea. Terra Nova 3:527–539. doi:10.1111/j.1365-3121.1991.tb00188.xCrossRefGoogle Scholar
  4. Ansal A, Akinci A, Cultrera G, Erdik M, Pessina V, Tönük G, Ameri G (2009) Loss estimation in Istanbul based on deterministic earthquake scenarios of the Marmara Sea region (Turkey). Soil Dyn Earthq Eng 29:699–709. doi:10.1016/j.soildyn.2008.07.006CrossRefGoogle Scholar
  5. Applied Technology Council (ATC) (1996) ATC-40. Seismic evaluation and retrofit of concrete buildings. Volume 1. Redwood City. California. USA. http://www.atcouncil.org/pdfs/atc40toc.pdf. Accessed 15 Sep 2011
  6. Batuk F, Sengezer B, Emem O (2005) The new zoning approach for earthquake risk assessment. In: Oosterom P van, Zlatanova S, Fendel E (eds) Geo-information for disaster management. Springer, Berlin-Heidelberg, pp 1225–1237Google Scholar
  7. Baycan-Levent T (2003) Globalization and development strategies for Istanbul: Regional policies and great urban transformation projects. 39th ISoCaRP Congress 2003. http://www.isocarp.net/Data/case_studies/359.pdf. Accessed 12 Oct 2010
  8. Beygo C, Ozcevik O, Turk S, Akcakaya I, Sen K, Damen T (2006) Milestones of Zeytinburnu Municipality through sustainable urban regeneration: From vision to action. 42nd ISoCaRP Congress 2006. http://www.isocarp.net/Data/case_studies/777.pdf. Accessed 12 Oct 2010
  9. Cakir G, Ün C, Baskent EZ, Köse S, Sivrikaya F, Keles S (2008) Evaluating urbanization, fragmentation and land use/land cover change pattern in Istanbul City, Turkey from 1971 to 2002. Land Degrad Dev 19:663–675. doi:10.1002/ldr.859CrossRefGoogle Scholar
  10. Chen K (1998) Correlations between census dwelling data and remotely sensed data. Proceedings: SIRC 98–10th annual colloquium of the spatial information research centre. Dunedin. New Zealand.Google Scholar
  11. Chen K (2002) An approach to linking remotely sensed data and areal census data. Int J Remote Sens 23:37–48. doi:10.1080/01431160010014297CrossRefGoogle Scholar
  12. Chen K, Su W, Li J, Sun Z (2009) Hierarchical object oriented classification using very high imagery and LIDAR data over urban areas. Adv Space Res 43:1101–1110. doi:10.1016/j.asr.2008.11.008CrossRefGoogle Scholar
  13. Cheng F, Thiel KH (1995) Delimiting the building heights in a city from the shadow in a panchromatic SPOT-image—Part 1. Test of forty-two buildings. Int J Remote Sens 19:409–415. doi:10.1080/01431169508954409CrossRefGoogle Scholar
  14. Dell’Aqua F, Lisini G, Gamba P (2009). Experiences in optical and SAR imagery analysis for damage assessment in the Wuhan, May 2008 earthquake. Geoscience and Remote Sensing Symposium (IGARSS) (2009). IEEE International 4:37–40. doi:10.1109/IGARSS.2009.5417603Google Scholar
  15. Dökmeci V, Berköz L (1994) Transformation of Istanbul from a monocentric to a polycentric city. Eur Plan Stud 2(2):193–205. doi:10.1080/09654319408720259CrossRefGoogle Scholar
  16. EMI (2005) Istanbul, Turkey. Disaster risk management profile. 3 CD city profile series—current working document. http://emi.pdc.org/cities/CP-Istanbul-09-05.pdf. Accessed 07 April 2010
  17. Erdik M, Durukal E (2008) Earthquake risk and its mitigation in Istanbul. Nat Hazards 44:181–197. doi:10.1007/s11069-007-9110-9CrossRefGoogle Scholar
  18. Erdik M, Demircioglu M, Sesetyan K, Durukal E, Siyahi B (2004) Earthquake hazard in the Marmara Region, Turkey. Soil Dyn Earthq Eng 24:605–631. doi:10.1016/j.soildyn.2004.04.003CrossRefGoogle Scholar
  19. Ergenc M, Ilkisik O, Turk M (2005) Earthquake risk and mitigation studies in Istanbul. EGU General Assembly 2006. NH 9.07—natural hazards impact on urban areas and infrastructure. Poster Presentation. Vienna. Austria. http://www.euromedina.org/bibliotheque_fichiers/Doc_RisksIstanbul.pdf. Accessed 14 Sep 2011
  20. Esch T (2006) Automatisierte Analyse von Siedlungsflächen auf der Basis höchstauflösender Radardaten. Dissertation, Bayerische Julius-Maximilians Universität Würzburg. GermanyGoogle Scholar
  21. Esch T, Thiel M, Schenk A, Roth A, Müller A, Dech A (2010) Delineation of urban footprints from TerraSAR-X data by analyzing speckle characteristics and intensity information. IEEE T Geosci Remote 48(2):905–916. doi:10.1109/TGRS.2009.2037144CrossRefGoogle Scholar
  22. Fernandez J (2005) Sound Practice No. 1. An earthquake Master Plan for Istanbul. 3 cd Sound Practice Series. Istanbul. Turkey. http://emi.pdc.org/soundpractices/Istanbul/SP1-Istan-Earthq-Master-Plan.pdf. Accessed 13 Sep 2011
  23. GENAR (2004a) Zeytinburnu Pilot Projesi Kapsaminda Konut, Ticaret, Kücük Sanayi ve Sanayi Bölgelerinde veri Derleme ve Degerlendirme Projesi. Büyük Sanayi Raporu. Temmuz 2004. Istanbul. Turkey.Google Scholar
  24. GENAR (2004b) Zeytinburnu Pilot Projesi Kapsaminda Konut, Ticaret, Kücük Sanayi ve Sanayi Bölgelerinde veri Derleme ve Degerlendirme Projesi. Kücük Sanayi Raporu. Temmuz 2004. Istanbul. Turkey.Google Scholar
  25. GENAR (2004c) Zeytinburnu Pilot Projesi Kapsaminda Konut, Ticaret, Kücük Sanayi ve Sanayi Bölgelerinde veri Derleme ve Degerlendirme Projesi. Kücük Sanayi. Mahalle ve Bölge Raporlari. Temmuz 2004. Istanbul. Turkey.Google Scholar
  26. Görgülü Z (2002) Istanbul. Die konsumierte Stadt. GeoPoint Nr. 11. Die sozialgeographische Hauspostille. Selbstverlag Lehrstuhl für Sozial- und Wirtschaftgeographie. Universität Augsburg. GermanyGoogle Scholar
  27. Hartl P, Cheng F (1995) Delimiting the building heights in a city from the shadow on a panchromatic SPOT-image: Part 2: Test of a complete city. Int J Remote Sens 16:2829–2842. doi:10.1080/01431169508954594CrossRefGoogle Scholar
  28. Harvey J (2002) Population estimation models based on individual TM pixels. Photogramm Eng Rem S 68(11):1181–1192Google Scholar
  29. IEMP (2003) Earthquake Master Plan for Istanbul. Metropolitan Municipality of Istanbul. Planning and Construction Directorate. Geotechnical and Earthquake Investigation Department. Bogazici University, Istanbul Technical University, Middle East Technical University, Yildiz Technical University. 7. July 2003. http://www.dmc.metu.edu.tr/DMC/download.php?fname=./AnaSayfa/Dosyalar/Raporlar/IBB.IDMP.ENG-comp.pdf. Accessed 01 Sep 2011
  30. Iisaka J, Hegedus E (1982) Population estimation from Landsat imagery. Remote Sens Environ 12:259–272. doi:10.1016/0034-4257(82)90039-6CrossRefGoogle Scholar
  31. Interactive City Map of Istanbul. Istanbul Sehir Rehberi, IMM. http://sehirrehberi.ibb.gov.tr/map.aspx. Accessed 10 Oct 2010
  32. Irvin B, McKeown D (1989) Methods for exploiting the relationship between buildings and their shadows in aerial imagery. IEEE T Syst Man Cyb 19:1564–1575. doi:10.1109/21.44071CrossRefGoogle Scholar
  33. JICA and IMM (2002a) The Study on A Disaster Prevention/Mitigation Basic Plan in Istanbul including Seismic Microzonation in the Republic of Turkey. Final Report. Main Report. (JICA—Japan International Cooperation Agency; IMM—Istanbul Metropolitan Municipality)Google Scholar
  34. JICA and IMM (2002b) The Study on A Disaster Prevention/Mitigation Basic Plan in Istanbul including Seismic Microzonation in the Republic of Turkey. Final Report Volume I. Summary. (JICA—Japan International Cooperation Agency; IMM—Istanbul Metropolitan Municipality)Google Scholar
  35. Kocaman S, Zhang L, Gruen A, Poli D (2006) 3D city modeling from high-resolution satellite Images. Proceedings: ISPRS workshop on topographic mapping from space. Ankara. Turkey.Google Scholar
  36. Kubanek J (2011) Comparison of GIS-based and high resolution satellite imagery population modelling. A case study for Istanbul. Ibidem-Verlag, Stuttgart.Google Scholar
  37. Kubanek J, Kappas M, Nolte E, Wenzel F, Taubenböck H (2010) Modelling of population dynamics: GIS versus remote sensing—a case study for Istanbul. The International Emergency Management Society (TIEMS) 17th Annual Conference Proceedings. June 8th–11th. 2010. Beijing. China.Google Scholar
  38. Liu X, Clarke K, Herold M (2006) Population density and image texture: a comparison study. Photogramm Eng Rem S 72(2):187–196. doi:0099-1112/06/7202–0187/$3.00/0Google Scholar
  39. Lo C (1995) Automated population and dwelling unit estimation from high-resolution satellite images: a GIS approach. Int J Remote Sens 16(1):17–34. doi:10.1080/01431169508954369CrossRefGoogle Scholar
  40. Lu D, Weng Q, Li G (2006). Residential population estimation using a remote sensing derived impervious surface approach. Int J Remote Sens 27(16):3553–3570. doi:10.1080/01431160600617202CrossRefGoogle Scholar
  41. Massalabi A, He D-C, Benie GB, Beaudry E (2004) Detecting information under and from shadow in panchromatic Ikonos images of the city of Sherbrooke. Geoscience and Remote Sensing Symposium (IGARSS), 2004. IEEE International. 3:2000–2003. doi:10.1109/IGARSS.2004.1370740Google Scholar
  42. Mesev V (2005) Identification and characterization of urban building patterns using IKONOS imagery and point-based postal data. Comput Environ Urban 29:541–557. doi:10.1016/j.compenvurbsys.2005.01.003CrossRefGoogle Scholar
  43. Mitchell J (1999) Mega cities and natural disasters: a comparative analysis. GeoJournal 49:137–142. doi:10.1023/A:1007024703844CrossRefGoogle Scholar
  44. Parsons T (2004) Recalculated probability of M ≥ 7 earthquakes beneath the Sea of Marmara, Turkey. J Geophys Res 109:B05304. doi:10.1029/2003JB002667Google Scholar
  45. Setiadi N, Taubenböck H, Raupp S, Birkmann J (2010) Integrating socio-economic data in spatial analysis: An exposure analysis method for planning urban risk mitigation. 15th International Conference on Urban Planning and Regional Development in the Information Society (REALCORP), Vienna, Austria. GeoMultimedia 2010. 367–374Google Scholar
  46. Sever S, Erek E, Vanholder R, Akoglu E, Yavuz M, Ergin H, Tekce M, Korular D, Tülbek M, Keven K, Vlem B van, Lameire N (2001) The Marmara earthquake: epidemiological analysis of the victims with nephrological problems. Kidney Int 60:1114–1123. doi:10.1046/j.1523–1755.2001.0600031114.xCrossRefGoogle Scholar
  47. Sohn G, Dowman I (2007) Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS J Photogramm 62:43–63. doi:10.1016/j.isprsjprs.2007.01.001CrossRefGoogle Scholar
  48. Souza I, Pereira M, Kurkdijan M (2003) Evaluation of high resolution satellite images for urban population estimation. Instituto National de Pesquisas Espacias. Aceito para apresentacao no 3° Simposio de Sensoriamento Remoto de Areas Urbanas, Istambul, 11–13 de junho, 2002– Turquia. Sao Jose dos Campos. Brazil. http://mtc-m12.sid.inpe.br/col/sid.inpe.br/marciana/2003/04.01.10.18/doc/publicacao.pdf. Accessed 10 Oct 2010
  49. Rottensteiner F, Trinder J, Clode S, Kubik K (2007) Building detection by fusion of airborne laser scanner data and multi-spectral images: Performance evaluation and sensitivity analysis. ISPRS J Photogramm 62:135–149. doi:10.1016/j.isprsjprs.2007.03.001CrossRefGoogle Scholar
  50. Taubenböck H (2008) Vulnerabilitätsabschätzung der erdbebengefährdeten Megacity Istanbul mit Methoden der Fernerkundung. Dissertation, Bayerische Julius-Maximilians Universität Würzburg. GermanyGoogle Scholar
  51. Taubenböck H, Roth A (2007) A transferable and stable object oriented classification approach in various urban areas and various high resolution sensors. 2007 Urban Remote Sensing Joint Event. doi:10.1109/URS.2007.371828Google Scholar
  52. Taubenböck H, Roth A, Dech S (2007) Linking structural urban characteristics derived from high resolution satellite data to population distribution. In: Rumor M, Coors V, Fendel E, Zlatanova S (eds) Urban Data Management. Annual 2007. Taylor & Francis Group, London. United KingdomGoogle Scholar
  53. Taubenböck H, Wurm M, Setiadi N, Gebert N, Roth A, Strunz G, Birkmann J, Dech S (2009) Integrating remote sensing and social science—the correlation of urban morphology with socio-economic parameters. In: Urban remote sensing joint event. Shanghai. China. doi:10.1109/URS.2009.5137506Google Scholar
  54. Taubenböck H, Esch T, Wurm M, Roth A, Dech S (2010) Object-based feature extraction using high spatial resolution satellite data of urban areas. J Spat Sci 55:117–133. doi:10.1080/14498596.2010.487854CrossRefGoogle Scholar
  55. TurkStat (2010) Address based population registration system. Population census results, 2009. Turkish Statistical Institute, Prime Ministry, Republic of Turkey. Press Release. http://www.turkstat.gov.tr. Accessed 14 April 2010
  56. United Nations (2008) World urbanization prospects: the 2007 revision. United Nations Department of Social and Economic Affairs/Population Division. New York. United StatesGoogle Scholar
  57. Wenzel F, Bendimerad F, Sinha R (2007) Megacities—megarisks. Nat Hazards 42:481–491. doi:10.1007/s11069-006-9073-2CrossRefGoogle Scholar
  58. Wu C, Murray A (2005) A cokriging method for estimating population density in urban areas. Computers Environ Urban 29:558–579. doi:10.1016/j.compenvurbsys.2005.01.006Google Scholar
  59. Wu C, Murray A (2007) Population estimation using Landsat enhanced thematic mapper imagery. Geogr Anal 39:26–43. doi:10.1111/j.1538-4632.2006.00694.xvCrossRefGoogle Scholar
  60. Wurm M, Taubenböck H, Schardt M, Esch T, Dech S (2011) Object-based image information fusion using multisensor earth observation data over urban areas. Int J Image Data Fusion 2:121–147. doi:10.1080/19479832.2010.543934CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Julia Kubanek
    • 1
  • Eike-Marie Nolte
    • 4
  • Hannes Taubenböck
    • 3
  • Friedemann Wenzel
    • 5
  • Martin Kappas
    • 2
  1. 1.Geodetic Institute (GIK)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute of GeographyUniversity of GöttingenGöttingenGermany
  3. 3.Georisks and Civil SecurityGerman Remote Sensing Data Center (DFD) German Aerospace Center (DLR)WesslingGermany
  4. 4.Universitätsrechenzentrum (URZ)Heidelberg UniversityHeidelbergGermany
  5. 5.Geophysical Institute (GPI)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations