Advertisement

Leaf Litter Decomposition and Nutrient Release Under Nitrogen, Phosphorus and Nitrogen Plus Phosphorus Additions in a Savanna in Central Brazil

  • Tamiel K. B. JacobsonEmail author
  • Mercedes M. C. Bustamante
Chapter

Abstract

The aim of this study was to determine leaf decomposition rates and nutrient release in a cerrado sensu stricto under nitrogen (N), phosphorus (P) and N plus P additions. The experiment was carried out in an area located in the Ecological Reserve of the Instituto Brasileiro de Geografia e Estatística, near Brasília (15° 56’ S, 47° 53’ W). Between 1998 and 2006, 100 kg ha−1 year−1 of N (N treatment), P (P treatment) and N plus P (NP treatment) were applied to 16 225 m2 plots, arranged in a completely randomized design. Litterfall was collected at the end of dry season (September 2006) and oven dried (60 °C) for 72 h. Litter bags with 10 g of leaf litter were incubated in situ for 453 days to determine decomposition rate. Nitrogen and P concentrations and mass loss were measured during the incubation process. Decomposition rates of leaf litter in N plots did not differ in relation to those in control plots. Leaf litter decomposition rates increased in P (+ 18.6 %) and NP (+ 27.4 %) plots, where there was a greater N (in NP plots) and P (in P and NP plots) initial concentration in litter relative to the control plots (p < 0.05). Leaf litter in the N treatment had the highest N mass loss, and together with NP treatment, the smallest P mass loss. Nitrogen addition increased N mass loss, while the combined addition of N and P resulted in an immobilization of N in leaf litter. When the nutrients are supplied separately, there is greater mass loss of N with N addition, and greater mass loss of P with P addition compared to that observed when N and P are supplied together. The results indicate that if the availability of P is not increased proportionally to the availability of N, the losses of N are intensified during the decomposition process.

Keywords

Biogeochemical cycling Cerrado Nutrient limitation Woody plants 

Notes

Acknowledgments

We would like to thank Regina Sartori, Gilberto B. Cosak and UnB Ecology Lab staff for valuable help. We also would like to thank the administration and staff of RECOR-IBGE. This study was funded by the Graduate Program in Ecology of the UnB, CNPq and LBA-NASA (ND-07).

References

  1. Allison, S. D., & Vitousek, P. M. (2004). Rapid nutrient cycling in leaf litter from invasive plants in Hawaii. Oecologia, 141, 612–619.CrossRefGoogle Scholar
  2. Attwill, P. M., & Adams, M. A. (1993). Nutrient cycling in forests. New Phytologist, 124(4), 561–582.CrossRefGoogle Scholar
  3. Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J. W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., & de Vries, W. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20(1), 30–59.CrossRefGoogle Scholar
  4. Bustamante, M. M. C., Medina, E., Asner, G. P., Nardoto, G. B., & Garcia-Montiel, D. C. (2006). Nitrogen cycling in tropical and temperate savannas. Biogeochemistry, 79, 209–237.CrossRefGoogle Scholar
  5. Cleveland, C. C., Reed, S. C., & Townsend, A. R. (2006). Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology, 87(2), 492–503.CrossRefGoogle Scholar
  6. Eiten, G. (1972). The cerrado vegetation of Brazil. Botanical Review, 38, 201–341.CrossRefGoogle Scholar
  7. EMBRAPA (1999) Manual de análises químicas de solos, plantas e fertilizantes. 1a ed. Embrapa, BrasíliaGoogle Scholar
  8. Falkowski, P. G., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., & Elser, J. (2000). The global carbon cycle: A test of our knowledge of Earth as a system. Science, 290, 291–296.CrossRefGoogle Scholar
  9. Filoso, S., Martinelli, L. A., Howarth, R. W., Boyer, E. W., & Dentener, F. (2006). Human activities changing the nitrogen cycle in Brazil. Biogeochemistry, 79, 61–89.CrossRefGoogle Scholar
  10. Fisk, M. C., & Fahey, T. J. (2001). Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests. Biogeochemistry, 53, 201–223.CrossRefGoogle Scholar
  11. Haridasan, M. (1994) Solos do Distrito Federal. In: M. Novaes-Pinto (Ed.), Cerrado: Caracterização, ocupação e perspectivas—O caso do Distrito Federal. Editora da Universidade de Brasília/SEMATEC, Brasília, pp. 321–344.Google Scholar
  12. Hobbie, S. (2008). Nitrogen effects on decomposition: A five-year experiment in eight temperate sites. Ecology, 89(9), 2633–2644.CrossRefGoogle Scholar
  13. Hobbie, S. E., & Vitousek, P. M. (2004). Nutrient limitation of decomposition in Hawaiian forests. Ecology, 81(7), 1867–1877.CrossRefGoogle Scholar
  14. Jacobson, T. K. B., Bustamante, M. C., & Kozovits, A. R. (2011). Diversity of shrub tree layer, leaf litter decomposition and N release in a Brazilian Cerrado under N, P and N plus P additions. Environmental Pollution, 159, 2236–2242.CrossRefGoogle Scholar
  15. Klink, C. A., & Machado, R. B. (2005). Conservation of the Brazilian Cerrado. Conservation Biology, 19(3), 707–713.CrossRefGoogle Scholar
  16. Knorr, M., Frey, S. D., & Curtis, P. S. (2005). Nitrogen additions and litter decomposition: A meta analysis. Ecology, 86(12), 3252–3257.CrossRefGoogle Scholar
  17. Kozovits, A. R., Bustamante, M. M. C., Garofalo, C. R., Bucci, S., Franco, A. C., Goldstein, G., & Meinzer, F. C. (2007). Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. Functional Ecology, 21, 1034–1043.CrossRefGoogle Scholar
  18. Nardoto, G. B., Bustamante, M. M. C., Pinto, A. S. P., & Klink, C. A. (2006). Nutrient use efficiency at ecosystem and species level in savanna areas of Central Brazil and impacts of fire. Journal of Tropical Ecology, 22, 191–201.CrossRefGoogle Scholar
  19. O’ Connel, A. M. (1994). Decomposition and nutrient content of litter in a fertilized eucalypt forest. Biology and Fertility of Soils, 17, 159–166.CrossRefGoogle Scholar
  20. Olson, J. S. (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44(2), 322–331.CrossRefGoogle Scholar
  21. Peres, J. R. R., Suhet, A. R., Vargas, M. A. T., & Drozdowicz, A. (1983). Litter production in areas of Brazilian “cerrados”. Pesquisa Agropecuária Brasileira, 18(9), 1037–1043.Google Scholar
  22. Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melilo, J. M. (1997). Human domination of earth’s ecosystem. Science, 227, 494–499.CrossRefGoogle Scholar
  23. Vitousek, P. M. (2004). Nutrient cycling and limitation: Hawaii as a model system. Princeton Environmental Institute Series (p. 223). Princeton: Princeton University Press.Google Scholar
  24. Weedon, J. T., Cornwell, K., Cornelissen, J. H. C., Zanne, A. E., Wirth, C., & Coomes, D. A. (2009). Global meta-analysis of wood decomposition rates: A role for trait variation among species? Ecology Letters, 12, 45–56.CrossRefGoogle Scholar
  25. Zhang, D., Hui, D., Luo, Y., & Zhou. G. (2008). Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. Journal of Plant Ecology, 1(2), 85–93.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Tamiel K. B. Jacobson
    • 1
    Email author
  • Mercedes M. C. Bustamante
    • 2
  1. 1.Faculdade UnB PlanaltinaUniversidade de BrasíliaPlanaltina, Distrito FederalBrazil
  2. 2.Departamento de EcologiaUniversidade de BrasíliaBrasília-DFBrazil

Personalised recommendations