Advertisement

Structure, Physiology, and Biochemistry of Collagens

  • Michael J. Mienaltowski
  • David E. Birk
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 802)

Abstract

Tendons and ligaments are connective tissues that guide motion, share loads, and transmit forces in a manner that is unique to each as well as the anatomical site and biomechanical stresses to which they are subjected. Collagens are the major molecular components of both tendons and ligaments. The hierarchical structure of tendon and its functional properties are determined by the collagens present, as well as their supramolecular organization. There are 28 different types of collagen that assemble into a variety of supramolecular structures. The assembly of specific supramolecular structures is dependent on the interaction with other matrix molecules as well as the cellular elements. Multiple suprastructural assemblies are integrated to form the functional tendon/ligament. This chapter begins with a discussion of collagen molecules. This is followed by a definition of the supramolecular structures assembled by different collagen types. The general principles involved in the assembly of collagen-containing suprastructures are presented focusing on the regulation of tendon collagen fibrillogenesis. Finally, site-specific differences are discussed. While generalizations can be made, differences exist between different tendons as well as between tendons and ligaments. Compositional differences will impact structure that in turn will determine functional differences. Elucidation of the unique physiology and pathophysiology of different tendons and ligaments will require an appreciation of the role compositional differences have on collagen suprastructural assembly, tissue organization, and function.

Keywords

Hierarchical structure of tendon Supramolecular structures of collagens Collagens I-XXVIII Fibril-forming collagens Procollagens Triple helix Crosslinking Fibril-associated collagens with interrupted triple helices (FACIT) Beaded filament-forming collagen Network-forming collagens 

References

  1. 1.
    Frank CBS, Shrive CB, Frank IKY, Hart DA (2007) Form and function of tendon and ligament. In: Einhorn TA, O’Keefe RJ, Buckwalter JA (eds) Orthopaedic basic science, 3rd edn. American Academy of Orthopaedic Surgeons, Rosemont, pp 199–222Google Scholar
  2. 2.
    Birk DE, Bruckner P (2005) Collagen suprastructures. Curr Top Chem 247:185–205Google Scholar
  3. 3.
    Franchi M, Trire A, Quaranta M, Orsini E, Ottani V (2007) Collagen structure of tendon relates to function. Sci World J 7:404–420CrossRefGoogle Scholar
  4. 4.
    Boot-Handford RP, Tuckwell DS (2003) Fibrillar collagen: the key to vertebrate evolution? A tale of molecular incest. Bioessays 25(2):142–151PubMedCrossRefGoogle Scholar
  5. 5.
    Birk DE, Mayne R (1997) Localization of collagen types I, III and V during tendon development. Changes in collagen types I and III are correlated with changes in fibril diameter. Eur J Cell Biol 72(4):352–361PubMedGoogle Scholar
  6. 6.
    Riechert K, Labs K, Lindenhayn K, Sinha P (2001) Semiquantitative analysis of types I and III collagen from tendons and ligaments in a rabbit model. J Orthop Sci 6(1):68–74PubMedCrossRefGoogle Scholar
  7. 7.
    Fukuta S, Oyama M, Kavalkovich K, Fu FH, Niyibizi C (1998) Identification of types II, IX and X collagens at the insertion site of the bovine Achilles tendon. Matrix Biol 17(1):65–73PubMedCrossRefGoogle Scholar
  8. 8.
    Milz S, Jakob J, Buttner A, Tischer T, Putz R, Benjamin M (2008) The structure of the coracoacromial ligament: fibrocartilage differentiation does not necessarily mean pathology. Scand J Med Sci Sports 18(1):16–22PubMedCrossRefGoogle Scholar
  9. 9.
    Smith SM, Thomas CE, Birk DE (2012) Pericellular proteins of the developing mouse tendon: a proteomic analysis. Connect Tissue Res 53(1):2–13PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Greenspan DS (2005) Biosynthetic processing of collagen molecules. Top Curr Chem 247:149–183Google Scholar
  11. 11.
    Peltonen L, Halila R, Ryhanen L (1985) Enzymes converting procollagens to collagens. J Cell Biochem 28(1):15–21PubMedCrossRefGoogle Scholar
  12. 12.
    Colige A, Ruggiero F, Vandenberghe I, Dubail J, Kesteloot F, Van Beeumen J, Beschin A, Brys L, Lapiere CM, Nusgens B (2005) Domains and maturation processes that regulate the activity of ADAMTS-2, a metalloproteinase cleaving the aminopropeptide of fibrillar procollagens types I-III and V. J Biol Chem 280(41):34397–34408PubMedCrossRefGoogle Scholar
  13. 13.
    Fessler LI, Fessler JH (1979) Characterization of type III procollagen from chick embryo blood vessels. J Biol Chem 254(1):233–239PubMedGoogle Scholar
  14. 14.
    Fessler LI, Timpl R, Fessler JH (1981) Assembly and processing of procollagen type III in chick embryo blood vessels. J Biol Chem 256(5):2531–2537PubMedGoogle Scholar
  15. 15.
    Fleischmajer R, Timpl R, Tuderman L, Raisher L, Wiestner M, Perlish JS, Graves PN (1981) Ultrastructural identification of extension aminopropeptides of type I and III collagens in human skin. Proc Natl Acad Sci U S A 78(12):7360–7364PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Moradi-Ameli M, Rousseau JC, Kleman JP, Champliaud MF, Boutillon MM, Bernillon J, Wallach J, Van der Rest M (1994) Diversity in the processing events at the N-terminus of type-V collagen. Eur J Biochem 221(3):987–995PubMedCrossRefGoogle Scholar
  17. 17.
    Rousseau JC, Farjanel J, Boutillon MM, Hartmann DJ, van der Rest M, Moradi-Ameli M (1996) Processing of type XI collagen. Determination of the matrix forms of the alpha1(XI) chain. J Biol Chem 271(39):23743–23748PubMedCrossRefGoogle Scholar
  18. 18.
    Gregory KE, Oxford JT, Chen Y, Gambee JE, Gygi SP, Aebersold R, Neame PJ, Mechling DE, Bachinger HP, Morris NP (2000) Structural organization of distinct domains within the non-collagenous N-terminal region of collagen type XI. J Biol Chem 275(15):11498–11506PubMedCrossRefGoogle Scholar
  19. 19.
    Hoffman GG, Branam AM, Huang G, Pelegri F, Cole WG, Wenstrup RM, Greenspan DS (2010) Characterization of the six zebrafish clade B fibrillar procollagen genes, with evidence for evolutionarily conserved alternative splicing within the pro-alpha1(V) C-propeptide. Matrix Biol 29(4):261–275PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Linsenmayer TF, Gibney E, Igoe F, Gordon MK, Fitch JM, Fessler LI, Birk DE (1993) Type V collagen: molecular structure and fibrillar organization of the chicken alpha 1(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis. J Cell Biol 121(5):1181–1189PubMedCrossRefGoogle Scholar
  21. 21.
    Wenstrup RJ, Smith SM, Florer JB, Zhang G, Beason DP, Seegmiller RE, Soslowsky LJ, Birk DE (2011) Regulation of collagen fibril nucleation and initial fibril assembly involves coordinate interactions with collagens V and XI in developing tendon. J Biol Chem 286(23):20455–20465PubMedCrossRefGoogle Scholar
  22. 22.
    Hulmes DJ (2002) Building collagen molecules, fibrils, and suprafibrillar structures. J Struct Biol 137(1–2):2–10PubMedCrossRefGoogle Scholar
  23. 23.
    van der Rest M, Mayne R (1988) Type IX collagen proteoglycan from cartilage is covalently cross-linked to type II collagen. J Biol Chem 263(4):1615–1618PubMedGoogle Scholar
  24. 24.
    Koch M, Bernasconi C, Chiquet M (1992) A major oligomeric fibroblast proteoglycan identified as a novel large form of type-XII collagen. Eur J Biochem 207(3):847–856PubMedCrossRefGoogle Scholar
  25. 25.
    Ansorge HL, Meng X, Zhang G, Veit G, Sun M, Klement JF, Beason DP, Soslowsky LJ, Koch M, Birk DE (2009) Type XIV collagen regulates fibrillogenesis: premature collagen fibril growth and tissue dysfunction in null mice. J Biol Chem 284(13):8427–8438PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang G, Young BB, Birk DE (2003) Differential expression of type XII collagen in developing chicken metatarsal tendons. J Anat 202(5):411–420PubMedCrossRefGoogle Scholar
  27. 27.
    Niyibizi C, Visconti CS, Kavalkovich K, Woo SL (1995) Collagens in an adult bovine medial collateral ligament: immunofluorescence localization by confocal microscopy reveals that type XIV collagen predominates at the ligament-bone junction. Matrix Biol 14(9):743–751PubMedCrossRefGoogle Scholar
  28. 28.
    Chou MY, Li HC (2002) Genomic organization and characterization of the human type XXI collagen (COL21A1) gene. Genomics 79(3):395–401PubMedCrossRefGoogle Scholar
  29. 29.
    Koch M, Schulze J, Hansen U, Ashwodt T, Keene DR, Brunken WJ, Burgeson RE, Bruckner P, Bruckner-Tuderman L (2004) A novel marker of tissue junctions, collagen XXII. J Biol Chem 279(21):22514–22521PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Myers JC, Yang H, D’Ippolito JA, Presente A, Miller MK, Dion AS (1994) The triple-helical region of human type XIX collagen consists of multiple collagenous subdomains and exhibits limited sequence homology to alpha 1(XVI). J Biol Chem 269(28):18549–18557PubMedGoogle Scholar
  31. 31.
    Pan TC, Zhang RZ, Mattei MG, Timpl R, Chu ML (1992) Cloning and chromosomal location of human alpha 1(XVI) collagen. Proc Natl Acad Sci U S A 89(14):6565–6569PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Yoshioka H, Zhang H, Ramirez F, Mattei MG, Moradi-Ameli M, van der Rest M, Gordon MK (1992) Synteny between the loci for a novel FACIT-like collagen locus (D6S228E) and alpha 1 (IX) collagen (COL9A1) on 6q12-q14 in humans. Genomics 13(3):884–886PubMedCrossRefGoogle Scholar
  33. 33.
    Wiradjaja F, DiTommaso T, Smyth I (2010) Basement membranes in development and disease. Birth Defects Res C Embryo Today 90(1):8–31PubMedCrossRefGoogle Scholar
  34. 34.
    Yurchenco PD, Patton BL (2009) Developmental and pathogenic mechanisms of basement membrane assembly. Curr Pharm Des 15(12):1277–1294PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Khoshnoodi J, Pedchenko V, Hudson BG (2008) Mammalian collagen IV. Microsc Res Tech 71(5):357–370PubMedCrossRefGoogle Scholar
  36. 36.
    Bruns RR, Press W, Engvall E, Timpl R, Gross J (1986) Type VI collagen in extracellular, 100-nm periodic filaments and fibrils: identification by immunoelectron microscopy. J Cell Biol 103(2):393–404PubMedCrossRefGoogle Scholar
  37. 37.
    Furthmayr H, Wiedemann H, Timpl R, Odermatt E, Engel J (1983) Electron-microscopical approach to a structural model of intima collagen. Biochem J 211(2):303–311PubMedGoogle Scholar
  38. 38.
    von der Mark H, Aumailley M, Wick G, Fleischmajer R, Timpl R (1984) Immunochemistry, genuine size and tissue localization of collagen VI. Eur J Biochem 142(3):493–502PubMedCrossRefGoogle Scholar
  39. 39.
    Kielty C, Grant ME (2002) The collagen family: structure, assembly, and organization in the extracellular matrix. In: Royce PM, Steinmann B (eds) Connective tissue and its heritable disorders. Wiley-Liss, New York, pp 159–222CrossRefGoogle Scholar
  40. 40.
    Lampe AK, Bushby KM (2005) Collagen VI related muscle disorders. J Med Genet 42(9):673–685PubMedCrossRefGoogle Scholar
  41. 41.
    Voermans NC, Bonnemann CG, Hamel BC, Jungbluth H, van Engelen BG (2009) Joint hypermobility as a distinctive feature in the differential diagnosis of myopathies. J Neurol 256(1):13–27PubMedCrossRefGoogle Scholar
  42. 42.
    Izu Y, Ansorge HL, Zhang G, Soslowsky LJ, Bonaldo P, Chu ML, Birk DE (2011) Dysfunctional tendon collagen fibrillogenesis in collagen VI null mice. Matrix Biol 30(1):53–61PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Pan TC, Zhang RZ, Markova D, Arita M, Zhang Y, Bogdanovich S, Khurana TS, Bonnemann CG, Birk DE, Chu ML (2013) COL6A3 protein deficiency in mice leads to muscle and tendon defects similar to human collagen VI congenital muscular dystrophy. J Biol Chem 288(20):14320–14331, PMC#3656288PubMedCrossRefGoogle Scholar
  44. 44.
    Chu ML, Mann K, Deutzmann R, Pribula-Conway D, Hsu-Chen CC, Bernard MP, Timpl R (1987) Characterization of three constituent chains of collagen type VI by peptide sequences and cDNA clones. Eur J Biochem 168(2):309–317PubMedCrossRefGoogle Scholar
  45. 45.
    Fitzgerald J, Rich C, Zhou FH, Hansen U (2008) Three novel collagen VI chains, alpha4(VI), alpha5(VI), and alpha6(VI). J Biol Chem 283(29):20170–20180PubMedCrossRefGoogle Scholar
  46. 46.
    Gara SK, Grumati P, Urciuolo A, Bonaldo P, Kobbe B, Koch M, Paulsson M, Wagener R (2008) Three novel collagen VI chains with high homology to the alpha3 chain. J Biol Chem 283(16):10658–10670PubMedCrossRefGoogle Scholar
  47. 47.
    Ball S, Bella J, Kielty C, Shuttleworth A (2003) Structural basis of type VI collagen dimer formation. J Biol Chem 278(17):15326–15332PubMedCrossRefGoogle Scholar
  48. 48.
    Knupp C, Squire JM (2001) A new twist in the collagen story–the type VI segmented supercoil. EMBO J 20(3):372–376PubMedCrossRefGoogle Scholar
  49. 49.
    Wiberg C, Heinegard D, Wenglen C, Timpl R, Morgelin M (2002) Biglycan organizes collagen VI into hexagonal-like networks resembling tissue structures. J Biol Chem 277(51):49120–49126PubMedCrossRefGoogle Scholar
  50. 50.
    Yamaguchi N, Mayne R, Ninomiya Y (1991) The alpha 1 (VIII) collagen gene is homologous to the alpha 1 (X) collagen gene and contains a large exon encoding the entire triple helical and carboxyl-terminal non-triple helical domains of the alpha 1 (VIII) polypeptide. J Biol Chem 266(7):4508–4513PubMedGoogle Scholar
  51. 51.
    Kwan AP, Cummings CE, Chapman JA, Grant ME (1991) Macromolecular organization of chicken type X collagen in vitro. J Cell Biol 114(3):597–604PubMedCrossRefGoogle Scholar
  52. 52.
    Shen G (2005) The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res 8(1):11–17PubMedCrossRefGoogle Scholar
  53. 53.
    Heikkinen A, Tu H, XIII Collagen PT (2012) A type II transmembrane protein with relevance to musculoskeletal tissues, microvessels and inflammation. Int J Biochem Cell Biol 44(5):714–717PubMedCrossRefGoogle Scholar
  54. 54.
    Latvanlehto A, Fox MA, Sormunen R, Tu H, Oikarainen T, Koski A, Naumenko N, Shakirzyanova A, Kallio M, Ilves M, Giniatullin R, Sanes JR, Pihlajaniemi T (2010) Muscle-derived collagen XIII regulates maturation of the skeletal neuromuscular junction. J Neurosci 30(37):12230–12241PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Canty EG, Lu Y, Meadows RS, Shaw MK, Holmes DF, Kadler KE (2004) Coalignment of plasma membrane channels and protrusions (fibripositors) specifies the parallelism of tendon. J Cell Biol 165(4):553–563PubMedCrossRefGoogle Scholar
  56. 56.
    Humphries SM, Lu Y, Canty EG, Kadler KE (2008) Active negative control of collagen fibrillogenesis in vivo, Intracellular cleavage of the type I procollagen propeptides in tendon fibroblasts without intracellular fibrils. J Biol Chem 283(18):12129–12135PubMedCrossRefGoogle Scholar
  57. 57.
    Hulmes DJ (2008) Collagen diversity, synthesis and assembly. In: Fratzl P (ed) Collagen: structure and mechanics. Springer, New York, pp 15–48CrossRefGoogle Scholar
  58. 58.
    Khoshnoodi J, Cartailler JP, Alvares K, Veis A, Hudson BG (2006) Molecular recognition in the assembly of collagens: terminal noncollagenous domains are key recognition modules in the formation of triple helical protomers. J Biol Chem 281(50):38117–38121PubMedCrossRefGoogle Scholar
  59. 59.
    Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Vogel BE, Doelz R, Kadler KE, Hojima Y, Engel J, Prockop DJ (1988) A substitution of cysteine for glycine 748 of the alpha 1 chain produces a kink at this site in the procollagen I molecule and an altered N-proteinase cleavage site over 225 nm away. J Biol Chem 263(35):19249–19255PubMedGoogle Scholar
  61. 61.
    Malfait F, De Paepe A (2009) Bleeding in the heritable connective tissue disorders: mechanisms, diagnosis and treatment. Blood Rev 23(5):191–197PubMedCrossRefGoogle Scholar
  62. 62.
    Myllyharju J, Kivirikko KI (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20(1):33–43PubMedCrossRefGoogle Scholar
  63. 63.
    Berg RA, Prockop DJ (1973) The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem Biophys Res Commun 52(1):115–120PubMedCrossRefGoogle Scholar
  64. 64.
    Okuyama K, Hongo C, Wu G, Mizuno K, Noguchi K, Ebisuzaki S, Tanaka Y, Nishino N, Bachinger HP (2009) High-resolution structures of collagen-like peptides [(Pro-Pro-Gly)4-Xaa-Yaa-Gly-(Pro-Pro-Gly)4]: implications for triple-helix hydration and Hyp(X) puckering. Biopolymers 91(5):361–372PubMedCrossRefGoogle Scholar
  65. 65.
    Batge B, Winter C, Notbohm H, Acil Y, Brinckmann J, Muller PK (1997) Glycosylation of human bone collagen I in relation to lysylhydroxylation and fibril diameter. J Biochem 122(1):109–115PubMedCrossRefGoogle Scholar
  66. 66.
    Notbohm H, Nokelainen M, Myllyharju J, Fietzek PP, Muller PK, Kivirikko KI (1999) Recombinant human type II collagens with low and high levels of hydroxylysine and its glycosylated forms show marked differences in fibrillogenesis in vitro. J Biol Chem 274(13):8988–8992PubMedCrossRefGoogle Scholar
  67. 67.
    Torre-Blanco A, Adachi E, Hojima Y, Wootton JA, Minor RR, Prockop DJ (1992) Temperature-induced post-translational over-modification of type I procollagen. Effects of over-modification of the protein on the rate of cleavage by procollagen N-proteinase and on self-assembly of collagen into fibrils. J Biol Chem 267(4):2650–2655PubMedGoogle Scholar
  68. 68.
    Keller H, Eikenberry EF, Winterhalter KH, Bruckner P (1985) High post-translational modification levels in type II procollagen are not a consequence of slow triple-helix formation. Coll Relat Res 5(3):245–251PubMedCrossRefGoogle Scholar
  69. 69.
    Brodsky B, Eikenberry EF, Belbruno KC, Sterling K (1982) Variations in collagen fibril structure in tendons. Biopolymers 21(5):935–951PubMedCrossRefGoogle Scholar
  70. 70.
    Katz EP, Wachtel EJ, Maroudas A (1986) Extrafibrillar proteoglycans osmotically regulate the molecular packing of collagen in cartilage. Biochim Biophys Acta 882(1):136–139PubMedCrossRefGoogle Scholar
  71. 71.
    Bachinger HP, Bruckner P, Timpl R, Prockop DJ, Engel J (1980) Folding mechanism of the triple helix in type-III collagen and type-III pN-collagen. Role of disulfide bridges and peptide bond isomerization. Eur J Biochem 106(2):619–632PubMedCrossRefGoogle Scholar
  72. 72.
    Bruckner P, Eikenberry EF, Prockop DJ (1981) Formation of the triple helix of type I procollagen in cellulo. A kinetic model based on cis-trans isomerization of peptide bonds. Eur J Biochem 118(3):607–613PubMedCrossRefGoogle Scholar
  73. 73.
    Steinmann B, Bruckner P, Superti-Furga A (1991) Cyclosporin A slows collagen triple-helix formation in vivo: indirect evidence for a physiologic role of peptidyl-prolyl cis-trans-isomerase. J Biol Chem 266(2):1299–1303PubMedGoogle Scholar
  74. 74.
    Marini JC, Cabral WA, Barnes AM (2010) Null mutations in LEPRE1 and CRTAP cause severe recessive osteogenesis imperfecta. Cell Tissue Res 339(1):59–70PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Avery NC, Bailey AJ (2005) Enzymic and non-enzymic cross-linking mechanisms in relation to turnover of collagen: relevance to aging and exercise. Scand J Med Sci Sports 15(4):231–240PubMedCrossRefGoogle Scholar
  76. 76.
    Bailey AJ (2001) Molecular mechanisms of ageing in connective tissues. Mech Ageing Dev 122(7):735–755PubMedCrossRefGoogle Scholar
  77. 77.
    Barnard K, Light ND, Sims TJ, Bailey AJ (1987) Chemistry of the collagen cross-links. Origin and partial characterization of a putative mature cross-link of collagen. Biochem J 244(2):303–309PubMedGoogle Scholar
  78. 78.
    Birk DE, Trelstad RL (1986) Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation. J Cell Biol 103(1):231–240PubMedCrossRefGoogle Scholar
  79. 79.
    Canty EG, Kadler KE (2005) Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 118(Pt 7):1341–1353PubMedCrossRefGoogle Scholar
  80. 80.
    Trelstad RL, Hayashi K (1979) Tendon collagen fibrillogenesis: intracellular subassemblies and cell surface changes associated with fibril growth. Dev Biol 71(2):228–242PubMedCrossRefGoogle Scholar
  81. 81.
    Birk DE, Zycband EI, Winkelmann DA, Trelstad RL (1989) Collagen fibrillogenesis in situ: fibril segments are intermediates in matrix assembly. Proc Natl Acad Sci U S A 86(12):4549–4553PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Birk DE, Nurminskaya MV, Zycband EI (1995) Collagen fibrillogenesis in situ: fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development. Dev Dyn 202(3):229–243PubMedCrossRefGoogle Scholar
  83. 83.
    Birk DE, Zycband EI, Woodruff S, Winkelmann DA, Trelstad RL (1997) Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures. Dev Dyn 208(3):291–298PubMedCrossRefGoogle Scholar
  84. 84.
    Canty EG, Kadler KE (2002) Collagen fibril biosynthesis in tendon: a review and recent insights. Comp Biochem Physiol A Mol Integr Physiol 133(4):979–985PubMedCrossRefGoogle Scholar
  85. 85.
    Graham HK, Holmes DF, Watson RB, Kadler KE (2000) Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction. J Mol Biol 295(4):891–902PubMedCrossRefGoogle Scholar
  86. 86.
    Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation. Biochem J 316(Pt 1):1–11PubMedGoogle Scholar
  87. 87.
    Kadler KE, Hill A, Canty-Laird EG (2008) Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 20(5):495–501PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Zhang G, Young BB, Ezura Y, Favata M, Soslowsky LJ, Chakravarti S, Birk DE (2005) Development of tendon structure and function: regulation of collagen fibrillogenesis. J Musculoskelet Neuronal Interact 5(1):5–21PubMedGoogle Scholar
  89. 89.
    Blaschke UK, Eikenberry EF, Hulmes DJ, Galla HJ, Bruckner P (2000) Collagen XI nucleates self-assembly and limits lateral growth of cartilage fibrils. J Biol Chem 275(14):10370–10378PubMedCrossRefGoogle Scholar
  90. 90.
    Marchant JK, Hahn RA, Linsenmayer TF, Birk DE (1996) Reduction of type V collagen using a dominant-negative strategy alters the regulation of fibrillogenesis and results in the loss of corneal-specific fibril morphology. J Cell Biol 135(5):1415–1426PubMedCrossRefGoogle Scholar
  91. 91.
    Wenstrup RJ, Florer JB, Brunskill EW, Bell SM, Chervoneva I, Birk DE (2004) Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem 279(51):53331–53337PubMedCrossRefGoogle Scholar
  92. 92.
    Wenstrup RJ, Florer JB, Cole WG, Willing MC, Birk DE (2004) Reduced type I collagen utilization: a pathogenic mechanism in COL5A1 haplo-insufficient Ehlers-Danlos syndrome. J Cell Biochem 92(1):113–124PubMedCrossRefGoogle Scholar
  93. 93.
    Aszodi A, Chan D, Hunziker E, Bateman JF, Fassler R (1998) Collagen II is essential for the removal of the notochord and the formation of intervertebral discs. J Cell Biol 143(5):1399–1412PubMedCrossRefGoogle Scholar
  94. 94.
    Li SW, Prockop DJ, Helminen H, Fassler R, Lapvetelainen T, Kiraly K, Peltarri A, Arokoski J, Lui H, Arita M et al (1995) Transgenic mice with targeted inactivation of the Col2 alpha 1 gene for collagen II develop a skeleton with membranous and periosteal bone but no endochondral bone. Genes Dev 9(22):2821–2830PubMedCrossRefGoogle Scholar
  95. 95.
    Li Y, Lacerda DA, Warman ML, Beier DR, Yoshioka H, Ninomiya Y, Oxford JT, Morris NP, Andrikopoulos K, Ramirez F et al (1995) A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell 80(3):423–430PubMedCrossRefGoogle Scholar
  96. 96.
    Seegmiller R, Fraser FC, Sheldon H (1971) A new chondrodystrophic mutant in mice. Electron microscopy of normal and abnormal chondrogenesis. J Cell Biol 48(3):580–593PubMedCrossRefGoogle Scholar
  97. 97.
    Birk DE (2001) Type V, collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 32(3):223–237PubMedCrossRefGoogle Scholar
  98. 98.
    Segev F, Heon E, Cole WG, Wenstrup RJ, Young F, Slomovic AR, Rootman DS, Whitaker-Menezes D, Chervoneva I, Birk DE (2006) Structural abnormalities of the cornea and lid resulting from collagen V mutations. Invest Ophthalmol Vis Sci 47(2):565–573PubMedCrossRefGoogle Scholar
  99. 99.
    Symoens S, Syx D, Malfait F, Callewaert B, De Backer J, Vanakker O, Coucke P, De Paepe A (2012) Comprehensive molecular analysis demonstrates type V collagen mutations in over 90% of patients with classic EDS and allows to refine diagnostic criteria. Hum Mutat 33(10):1485–1493PubMedCrossRefGoogle Scholar
  100. 100.
    Mao Y, Schwarzbauer JE (2005) Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24(6):389–399PubMedCrossRefGoogle Scholar
  101. 101.
    Zhong C, Chrzanowska-Wodnicka M, Brown J, Shaub A, Belkin AM, Burridge K (1998) Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J Cell Biol 141(2):539–551PubMedCrossRefGoogle Scholar
  102. 102.
    McDonald JA, Kelley DG, Broekelmann TJ (1982) Role of fibronectin in collagen deposition: Fab’ to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix. J Cell Biol 92(2):485–492PubMedCrossRefGoogle Scholar
  103. 103.
    Chen S, Birk DE (2013) The regulatory roles of small leucine-rich proteoglycans in extracellular matrix assembly. FEBS J 280(10):2120–2137, PMC#3651807PubMedCrossRefGoogle Scholar
  104. 104.
    Ameye L, Young MF (2002) Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology 12(9):107R–116RPubMedCrossRefGoogle Scholar
  105. 105.
    Chakravarti S (2002) Functions of lumican and fibromodulin: lessons from knockout mice. Glycoconj J 19(4–5):287–293PubMedCrossRefGoogle Scholar
  106. 106.
    Kalamajski S, Oldberg A (2010) The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol 29(4):248–253PubMedCrossRefGoogle Scholar
  107. 107.
    Connizzo BK, Sarver JJ, Birk DE, Soslowsky LJ (2013) Effect of age and proteoglycan deficiency on collagen fiber re-alignment and mechanical properties in mouse supraspinatus tendon. J Biomech Eng 135(2):021019PubMedCrossRefGoogle Scholar
  108. 108.
    Dourte LM, Pathmanathan L, Mienaltowski MJ, Jawad AF, Birk DE, Soslowsky LJ (2013) Mechanical, compositional, and structural properties of the mouse patellar tendon with changes in biglycan gene expression. J Orthop Res 31(9):1430–1437PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Dunkman AA, Buckley MR, Mienaltowski MJ, Adams SM, Thomas SJ, Satchell L, Kumar A, Pathmanathan L, Beason DP, Iozzo RV, Birk DE, Soslowsky LJ (2013) Decorin expression is important for age-related changes in tendon structure and mechanical properties. Matrix Biol 32(1):3–13, PMC#3615887PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Ezura Y, Chakravarti S, Oldberg A, Chervoneva I, Birk DE (2000) Differential expression of lumican and fibromodulin regulate collagen fibrillogenesis in developing mouse tendons. J Cell Biol 151(4):779–788PubMedCrossRefGoogle Scholar
  111. 111.
    Ameye L, Aria D, Jepsen K, Oldberg A, Xu T, Young MF (2002) Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis. FASEB J 16(7):673–680PubMedCrossRefGoogle Scholar
  112. 112.
    Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136(3):729–743PubMedCrossRefGoogle Scholar
  113. 113.
    Dourte LM, Pathmanathan L, Jawad AF, Iozzo RV, Mienaltowski MJ, Birk DE, Soslowsky LJ (2012) Influence of decorin on the mechanical, compositional, and structural properties of the mouse patellar tendon. J Biomech Eng 134(3):031005PubMedCrossRefGoogle Scholar
  114. 114.
    Jepsen KJ, Wu F, Peragallo JH, Paul J, Roberts L, Ezura Y, Oldberg A, Birk DE, Chakravarti S (2002) A syndrome of joint laxity and impaired tendon integrity in lumican- and fibromodulin-deficient mice. J Biol Chem 277(38):35532–35540PubMedCrossRefGoogle Scholar
  115. 115.
    Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13(10):1219–1227PubMedCrossRefGoogle Scholar
  116. 116.
    Rumian AP, Wallace AL, Birch HL (2007) Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features–a comparative study in an ovine model. J Orthop Res 25(4):458–464PubMedCrossRefGoogle Scholar
  117. 117.
    Franchi M, Quaranta M, Macciocca M, Leonardi L, Ottani V, Bianchini P, Diaspro A, Ruggeri A (2010) Collagen fibre arrangement and functional crimping pattern of the medial collateral ligament in the rat knee. Knee Surg Sports Traumatol Arthrosc 18(12):1671–1678PubMedCrossRefGoogle Scholar
  118. 118.
    An KN, Sun YL, Luo ZP (2004) Flexibility of type I collagen and mechanical property of connective tissue. Biorheology 41:239–246PubMedGoogle Scholar
  119. 119.
    Harner CD, Xerogeanes JW, Livesay GA, Carlin GJ, Smith BA, Kusayama T, Kashiwaguchi S, Woo SL (1995) The human posterior cruciate ligament complex: an interdisciplinary study. Ligament morphology and biomechanical evaluation. Am J Sports Med 23(6):736–745PubMedCrossRefGoogle Scholar
  120. 120.
    Bartlett J (2008) Anterior cruciate ligament graft fixation: is the issue mechanical or biological? ANZ J Surg 78(3):118PubMedCrossRefGoogle Scholar
  121. 121.
    Fishkin Z, Miller D, Ritter C, Ziv I (2002) Changes in human knee ligament stiffness secondary to osteoarthritis. J Orthop Res 20(2):204–207PubMedCrossRefGoogle Scholar
  122. 122.
    Peltonen J, Cronin NJ, Avela J, Finni T (2010) In vivo mechanical response of human Achilles tendon to a single bout of hopping exercise. J Exp Biol 213(Pt 8):1259–1265PubMedCrossRefGoogle Scholar
  123. 123.
    Chandrashekar N, Mansouri H, Slauterbeck J, Hashemi J (2006) Sex-based differences in the tensile properties of the human anterior cruciate ligament. J Biomech 39(16):2943–2950PubMedCrossRefGoogle Scholar
  124. 124.
    Martin RB, Burr DB, Sharkey NA (1998) Mechanical properties of ligament and tendon. Skeletal tissue mechanics. Springer, New York, pp 309–346CrossRefGoogle Scholar
  125. 125.
    Quapp KM, Weiss JA (1998) Material characterization of human medial collateral ligament. J Biomech Eng 120(6):757–763PubMedCrossRefGoogle Scholar
  126. 126.
    Clark JM, Harryman DT 2nd (1992) Tendons, ligaments, and capsule of the rotator cuff. Gross and microscopic anatomy. J Bone Joint Surg Am 74(5):713–725PubMedGoogle Scholar
  127. 127.
    Berenson MC, Blevins FT, Plaas AH, Vogel KG (1996) Proteoglycans of human rotator cuff tendons. J Orthop Res 14(4):518–525PubMedCrossRefGoogle Scholar
  128. 128.
    Thomopoulos S, Genin GM, Galatz LM (2010) The development and morphogenesis of the tendon-to-bone insertion – what development can teach us about healing. J Musculoskelet Neuronal Interact 10(1):35–45PubMedCentralPubMedGoogle Scholar
  129. 129.
    Waggett AD, Ralphs JR, Kwan AP, Woodnutt D, Benjamin M (1998) Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon. Matrix Biol 16(8):457–470PubMedCrossRefGoogle Scholar
  130. 130.
    Thomopoulos S, Williams GR, Gimbel JA, Favata M, Soslowsky LJ (2003) Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res 21(3):413–419PubMedCrossRefGoogle Scholar
  131. 131.
    Birk DE, Bruckner P (2011) Collagens, suprastructures, and collagen fibril assembly. In: Mecham RP (ed) The extracellular matrix: an overview. Springer, Berlin, pp 77–116CrossRefGoogle Scholar
  132. 132.
    Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8(6):457–470PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Departments of Molecular Pharmacology & Physiology and Orthopaedics & Sports MedicineUniversity of South Florida, Morsani College of MedicineTampaUSA

Personalised recommendations