Advertisement

Brain Metastasis

  • Yvonne Kienast
Chapter

Abstract

Metastatic dissemination to the central nervous system (CNS) causes physical and cognitive impairments and limits the survival of cancer patients, particularly those with advanced melanoma, lung and breast cancer. As systemic therapies improve for other cancer types, relapse to the CNS is likely to rise as a sanctuary site presumably due to the inability of presently available drugs to cross the blood-brain barrier (BBB). Patients at risk would therefore benefit from the development of prevention and improved therapies. With this in mind, this chapter discusses preclinical approaches to study the biology, treatment or prevention of brain metastasis formation. Experimental imaging techniques for the study of brain metastasis formation are also reviewed. By integrating the information obtained from various modeling approaches, we hope to obtain a deeper level of understanding of the biology and molecular basis of CNS metastasis, and to uncover therapeutic vulnerabilities of this fatal disease.

Keywords

Brain Metastasis Central Nervous System Metastasis Human Brain Microvascular Endothelial Cell Tumor Cell Inoculation Cranial Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Patchell RA (2003) The management of brain metastases. Cancer Treat Rev 29(6):533–540PubMedCrossRefGoogle Scholar
  2. 2.
    Gavrilovic IT, Posner JB (2005) Brain metastases: epidemiology and pathophysiology. J Neurooncol 75(1):5–14PubMedCrossRefGoogle Scholar
  3. 3.
    Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA, Massague J (2009) Genes that mediate breast cancer metastasis to the brain. Nature459(7249):1005–1009Google Scholar
  4. 4.
    Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572PubMedCrossRefGoogle Scholar
  5. 5.
    Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, Winkler F (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16(1):116–122PubMedCrossRefGoogle Scholar
  6. 6.
    Lorger M, Krueger JS, O’Neal M, Staflin K, Felding-Habermann B (2009) Activation of tumor cell integrin alphavbeta3 controls angiogenesis and metastatic growth in the brain. Proc Natl Acad Sci USA 106(26):10666–10671PubMedCrossRefGoogle Scholar
  7. 7.
    Paget S (1889) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8(2):98–101Google Scholar
  8. 8.
    Lorger M, Felding-Habermann B (2010) Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol 176(6):2958–2971PubMedCrossRefGoogle Scholar
  9. 9.
    Fitzgerald DP, Palmieri D, Hua E, Hargrave E, Herring JM, Qian Y, Vega-Valle E, Weil RJ, Stark AM, Vortmeyer AO, Steeg PS (2008) Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clin Exp Metastasis 25(7):799–810PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang M, Olsson Y (1995) Reactions of astrocytes and microglial cells around hematogenous metastases of the human brain. Expression of endothelin-like immunoreactivity in reactive astrocytes and activation of microglial cells. J Neurol Sci 134(1–2):26–32PubMedCrossRefGoogle Scholar
  11. 11.
    Patel RR, Mehta MP (2007) Targeted therapy for brain metastases: improving the therapeutic ratio. Clin Cancer Res 13(6):1675–1683PubMedCrossRefGoogle Scholar
  12. 12.
    Chamberlain MC (2010) Brain metastases: a medical neuro-oncology perspective. Expert Rev Neurother 10(4):563–573PubMedCrossRefGoogle Scholar
  13. 13.
    Takeshima H, Kuratsu J, Nishi T, Ushio Y (2002) Prognostic factors in patients who survived more than 10 years after undergoing surgery for metastatic brain tumors: report of 5 cases and review of the literature. Surg Neurol 58(2):118–123PubMedCrossRefGoogle Scholar
  14. 14.
    Kienast Y, Winkler F (2010) Therapy and prophylaxis of brain metastases. Expert Rev Anticancer Ther 10(11):1763–1777PubMedCrossRefGoogle Scholar
  15. 15.
    Fidler IJ, Yano S, Zhang RD, Fujimaki T, Bucana CD (2002) The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol 3(1):53–57PubMedCrossRefGoogle Scholar
  16. 16.
    Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, Adkins CE, Roberts A, Thorsheim HR, Gaasch JA, Huang S, Palmieri D, Steeg PS, Smith QR (2010) Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 16(23):5664–5678PubMedCrossRefGoogle Scholar
  17. 17.
    Carbonell WS, Ansorge O, Sibson N, Muschel R (2009) The vascular basement membrane as "soil" in brain metastasis. PLoS ONE 4(6):e5857PubMedCrossRefGoogle Scholar
  18. 18.
    Kusters B, Leenders WP, Wesseling P, Smits D, Verrijp K, Ruiter DJ, Peters JP, van Der Kogel AJ, de Waal RM (2002) Vascular endothelial growth factor-A(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res 62(2):341–345PubMedGoogle Scholar
  19. 19.
    JuanYin J, Tracy K, Zhang L, Munasinghe J, Shapiro E, Koretsky A, Kelly K (2009) Noninvasive imaging of the functional effects of anti-VEGF therapy on tumor cell extravasation and regional blood volume in an experimental brain metastasis model. Clin Exp Metastasis 26(5):403–414PubMedCrossRefGoogle Scholar
  20. 20.
    Leenders W, Kusters B, Pikkemaat J, Wesseling P, Ruiter D, Heerschap A, Barentsz J, de Waal RM (2003) Vascular endothelial growth factor-A determines detectability of experimental melanoma brain metastasis in GD-DTPA-enhanced MRI. Int J Cancer 105(4):437–443PubMedCrossRefGoogle Scholar
  21. 21.
    Kim LS, Huang S, Lu W, Lev DC, Price JE (2004) Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin Exp Metastasis 21(2):107–118PubMedCrossRefGoogle Scholar
  22. 22.
    Leenders WP, Kusters B, Verrijp K, Maass C, Wesseling P, Heerschap A, Ruiter D, Ryan A, de Waal R (2004) Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res 10(18 Pt 1):6222–6230Google Scholar
  23. 23.
    Novello O, Abrey LE, Grossi F (2009) Administration of sunitinib to patients with nonsmall cell lung cancer and irradiated brain metastases: A phase II trial. J Clin Oncol 27(15s (suppl., abstr 8077)):15s (suppl., abstr 8077)Google Scholar
  24. 24.
    Massard C, Zonierek J, Gross-Goupil M, Fizazi K, Szczylik C, Escudier B (2010) Incidence of brain metastases in renal cell carcinoma treated with sorafenib. Ann Oncol 21(5):1027–1031PubMedCrossRefGoogle Scholar
  25. 25.
    Altaha R, Crowell E, Hobbs G, Higa G, Abraham J (2005) Increased risk of brain metastases in patients with HER-2/neu-positive breast carcinoma. Cancer 103(3):442–443PubMedCrossRefGoogle Scholar
  26. 26.
    Stemmler HJ, Kahlert S, Siekiera W, Untch M, Heinrich B, Heinemann V (2006) Characteristics of patients with brain metastases receiving trastuzumab for HER2 overexpressing metastatic breast cancer. Breast 15(2):219–225PubMedCrossRefGoogle Scholar
  27. 27.
    Yau T, Swanton C, Chua S, Sue A, Walsh G, Rostom A, Johnston SR, O’Brien ME, Smith IE: Incidence, pattern and timing of brain metastases among patients with advanced breast cancer treated with trastuzumab. Acta Oncol 2006;45(2):196–201PubMedCrossRefGoogle Scholar
  28. 28.
    Palmieri D, Chambers AF, Felding-Habermann B, Huang S, Steeg PS (2007) The biology of metastasis to a sanctuary site. Clin Cancer Res 13(6):1656–1662PubMedCrossRefGoogle Scholar
  29. 29.
    Grinberg-Rashi H, Ofek E, Perelman M, Skarda J, Yaron P, Hajduch M, Jacob-Hirsch J, Amariglio N, Krupsky M, Simansky DA, Ram Z, Pfeffer R, Galernter I, Steinberg DM, Ben-Dov I, Rechavi G, Izraeli S (2009) The expression of three genes in primary non-small cell lung cancer is associated with metastatic spread to the brain. Clin Cancer Res 15(5):1755–1761PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang C, Zhang F, Tsan R, Fidler IJ (2009) Transforming growth factor-beta2 is a molecular determinant for site-specific melanoma metastasis in the brain. Cancer Res 69(3):828–835PubMedCrossRefGoogle Scholar
  31. 31.
    Ray PS, Wang J, Qu Y, Sim MS, Shamonki J, Bagaria SP, Ye X, Liu B, Elashoff D, Hoon DS, Walter MA, Martens JW, Richardson AL, Giuliano AE, Cui X (2010) FOXC1 is a potential prognostic biomarker with functional significance in basal-like breast cancer. Cancer Res 70(10):3870–3876PubMedCrossRefGoogle Scholar
  32. 32.
    Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M, Gerald WL, Massague J (2009) WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138(1):51–62PubMedCrossRefGoogle Scholar
  33. 33.
    Xie TX, Huang FJ, Aldape KD, Kang SH, Liu M, Gershenwald JE, Xie K, Sawaya R, Huang S (2006) Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res 66(6):3188–3196PubMedCrossRefGoogle Scholar
  34. 34.
    Nam DH, Jeon HM, Kim S, Kim MH, Lee YJ, Lee MS, Kim H, Joo KM, Lee DS, Price JE, Bang SI, Park WY (2008) Activation of notch signaling in a xenograft model of brain metastasis. Clin Cancer Res 14(13):4059–4066PubMedCrossRefGoogle Scholar
  35. 35.
    Gabos Z, Sinha R, Hanson J, Chauhan N, Hugh J, Mackey JR, Abdulkarim B (2006) Prognostic significance of human epidermal growth factor receptor positivity for the development of brain metastasis after newly diagnosed breast cancer. J Clin Oncol 24(36):5658–5663PubMedCrossRefGoogle Scholar
  36. 36.
    Pestalozzi BC, Zahrieh D, Price KN, Holmberg SB, Lindtner J, Collins J, Crivellari D, Fey MF, Murray E, Pagani O, Simoncini E, Castiglione-Gertsch M, Gelber RD, Coates AS, Goldhirsch A (2006) Identifying breast cancer patients at risk for Central Nervous System (CNS) metastases in trials of the International Breast Cancer Study Group (IBCSG). Ann Oncol 17(6):935–944PubMedCrossRefGoogle Scholar
  37. 37.
    Lin NU, Claus E, Sohl J, Razzak AR, Arnaout A, Winer EP (2008) Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer: high incidence of central nervous system metastases. Cancer 113(10):2638–2645PubMedCrossRefGoogle Scholar
  38. 38.
    Palmieri D, Fitzgerald D, Shreeve SM, Hua E, Bronder JL, Weil RJ, Davis S, Stark AM, Merino MJ, Kurek R, Mehdorn HM, Davis G, Steinberg SM, Meltzer PS, Aldape K, Steeg PS (2009) Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol Cancer Res 7(9):1438–1445PubMedCrossRefGoogle Scholar
  39. 39.
    Robey RB, Hay N (2005) Mitochondrial hexokinases: guardians of the mitochondria. Cell Cycle 4(5):654–658PubMedCrossRefGoogle Scholar
  40. 40.
    Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56PubMedCrossRefGoogle Scholar
  41. 41.
    Zlotnik A (2004) Chemokines in neoplastic progression. Semin Cancer Biol 14(3):181–185PubMedCrossRefGoogle Scholar
  42. 42.
    Palmieri D, Bronder JL, Herring JM, Yoneda T, Weil RJ, Stark AM, Kurek R, Vega-Valle E, Feigenbaum L, Halverson D, Vortmeyer AO, Steinberg SM, Aldape K, Steeg PS (2007) Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67(9):4190–4198PubMedCrossRefGoogle Scholar
  43. 43.
    Eugenin EA, Berman JW (2003) Chemokine-dependent mechanisms of leukocyte trafficking across a model of the blood-brain barrier. Methods 29(4):351–361PubMedCrossRefGoogle Scholar
  44. 44.
    Carbonell WS, Murase S, Horwitz AF, Mandell JW (2005) Migration of perilesional microglia after focal brain injury and modulation by CC chemokine receptor 5: an in situ time-lapse confocal imaging study. J Neurosci 25(30):7040–7047PubMedCrossRefGoogle Scholar
  45. 45.
    Schackert G, Fidler IJ (1988) Development of in vivo models for studies of brain metastasis. Int J Cancer 41(4):589–594PubMedCrossRefGoogle Scholar
  46. 46.
    Schackert G, Price JE, Zhang RD, Bucana CD, Itoh K, Fidler IJ (1990) Regional growth of different human melanomas as metastases in the brain of nude mice. Am J Pathol 1990;136(1):95–102PubMedGoogle Scholar
  47. 47.
    Fidler IJ, Schackert G, Zhang RD, Radinsky R, Fujimaki T (1999) The biology of melanoma brain metastasis. Cancer Metastasis Rev 18(3):387–400PubMedCrossRefGoogle Scholar
  48. 48.
    Chung E, Yamashita H, Au P, Tannous BA, Fukumura D, Jain RK (2009) Secreted Gaussia luciferase as a biomarker for monitoring tumor progression and treatment response of systemic metastases. PLoS ONE 4(12):e8316PubMedCrossRefGoogle Scholar
  49. 49.
    Winkler F, Kienast Y, Fuhrmann M, von Baumgarten L, Burgold S, Mitteregger G, Kretzschmar H, Herms J (2009) Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia 57(12):1306–1315PubMedCrossRefGoogle Scholar
  50. 50.
    Rampetsreiter P, Casanovas E, Eferl R (2011) Genetically modiefied mouse models of cancer invasion and metastasis. Drug Discovery Today: Disease ModelsGoogle Scholar
  51. 51.
    Yang M, Jiang P, Sun FX, Hasegawa S, Baranov E, Chishima T, Shimada H, Moossa AR, Hoffman RM (1999) A fluorescent orthotopic bone metastasis model of human prostate cancer. Cancer Res 59(4):781–786PubMedGoogle Scholar
  52. 52.
    Yang M, Jiang P, An Z, Baranov E, Li L, Hasegawa S, Al-Tuwaijri M, Chishima T, Shimada H, Moossa AR, Hoffman RM (1999) Genetically fluorescent melanoma bone and organ metastasis models. Clin Cancer Res 5(11):3549–3559PubMedGoogle Scholar
  53. 53.
    Hayashi K, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, Bouvet M, Wessels J, Hoffman RM (2009) A color-coded orthotopic nude-mouse treatment model of brain-metastatic paralyzing spinal cord cancer that induces angiogenesis and neurogenesis. Cell Prolif 42(1):75–82PubMedCrossRefGoogle Scholar
  54. 54.
    Cruz-Munoz W, Man S, Xu P, Kerbel RS (2008) Development of a preclinical model of spontaneous human melanoma central nervous system metastasis. Cancer Res 68(12):4500–4505PubMedCrossRefGoogle Scholar
  55. 55.
    Alterman AL, Stackpole CW (1989) B16 melanoma spontaneous brain metastasis: occurrence and development within leptomeninges blood vessels. Clin Exp Metastasis 7(1):15–23PubMedCrossRefGoogle Scholar
  56. 56.
    Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R (2001) A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16(8):1486–1495PubMedCrossRefGoogle Scholar
  57. 57.
    Dodt HU, Leischner U, Schierloh A, Jahrling N, Mauch CP, Deininger K, Deussing JM, Eder M, Zieglgansberger W, Becker K (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4(4):331–336PubMedCrossRefGoogle Scholar
  58. 58.
    Malek A, Catapano CV, Czubayko F, Aigner A (2010) A sensitive polymerase chain reaction-based method for detection and quantification of metastasis in human xenograft mouse models. Clin Exp Metastasis 27(4):261–271PubMedCrossRefGoogle Scholar
  59. 59.
    Schneider T, Osl F, Friess T, Stockinger H, Scheuer WV (2002) Quantification of human Alu sequences by real-time PCR–an improved method to measure therapeutic efficacy of anti-metastatic drugs in human xenotransplants. Clin Exp Metastasis 19(7):571–582PubMedCrossRefGoogle Scholar
  60. 60.
    Anderson SA, Frank JA (2007) MRI of mouse models of neurological disorders. NMR Biomed 20(3):200–215PubMedCrossRefGoogle Scholar
  61. 61.
    Heyn C, Ronald JA, Ramadan SS, Snir JA, Barry AM, MacKenzie LT, Mikulis DJ, Palmieri D, Bronder JL, Steeg PS, Yoneda T, MacDonald IC, Chambers AF, Rutt BK, Foster PJ (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56(5):1001–1010PubMedCrossRefGoogle Scholar
  62. 62.
    Song HT, Jordan EK, Lewis BK, Gold E, Liu W, Frank JA (2011) Quantitative T2* imaging of metastatic human breast cancer to brain in the nude rat at 3 T. NMR Biomed 24(3):325–334PubMedCrossRefGoogle Scholar
  63. 63.
    Simoes RV, Martinez-Aranda A, Martin B, Cerdan S, Sierra A, Arus C (2008) Preliminary characterization of an experimental breast cancer cells brain metastasis mouse model by MRI/MRS. MAGMA 21(4):237–249PubMedCrossRefGoogle Scholar
  64. 64.
    Hawes JJ, Reilly KM (2010) Bioluminescent approaches for measuring tumor growth in a mouse model of neurofibromatosis. Toxicol Pathol 38(1):123–130PubMedCrossRefGoogle Scholar
  65. 65.
    Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940PubMedCrossRefGoogle Scholar
  66. 66.
    Göppert-Mayer M (1931) Elementary processes with two-quantum transitionsGoogle Scholar
  67. 67.
    Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG, Arbuckle RB, Swint JM, Shiu AS, Maor MH, Meyers CA (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10(11):1037–1044PubMedCrossRefGoogle Scholar
  68. 68.
    Chang EL, Wefel JS, Maor MH, Hassenbusch SJ, III, Mahajan A, Lang FF, Woo SY, Mathews LA, Allen PK, Shiu AS, Meyers CA (2007) A pilot study of neurocognitive function in patients with one to three new brain metastases initially treated with stereotactic radiosurgery alone. Neurosurgery 60(2):277–283PubMedGoogle Scholar
  69. 69.
    Robbins ME, Payne V, Tommasi E, Diz DI, Hsu FC, Brown WR, Wheeler KT, Olson J, Zhao W (2009) The AT1 receptor antagonist, L-158,809, prevents or ameliorates fractionated whole-brain irradiation-induced cognitive impairment. Int J Radiat Oncol Biol Phys 73(2):499–505PubMedCrossRefGoogle Scholar
  70. 70.
    Zhao W, Payne V, Tommasi E, Diz DI, Hsu FC, Robbins ME (2007) Administration of the peroxisomal proliferator-activated receptor gamma agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment. Int J Radiat Oncol Biol Phys 67(1):6–9PubMedCrossRefGoogle Scholar
  71. 71.
    Ramanan S, Kooshki M, Zhao W, Hsu FC, Riddle DR, Robbins ME (2009) The PPARalpha agonist fenofibrate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. Int J Radiat Oncol Biol Phys 75(3):870–877PubMedCrossRefGoogle Scholar
  72. 72.
    Rosenberg A, Knox S (2006) Radiation sensitization with redox modulators: a promising approach. Int J Radiat Oncol Biol Phys 64(2):343–354PubMedCrossRefGoogle Scholar
  73. 73.
    Francis D, Richards GM, Forouzannia A, Mehta MP, Khuntia D (2009) Motexafin gadolinium: a novel radiosensitizer for brain tumors. Expert Opin Pharmacother 10(13):2171–2180PubMedCrossRefGoogle Scholar
  74. 74.
    Palmieri D, Lockman PR, Thomas FC, Hua E, Herring J, Hargrave E, Johnson M, Flores N, Qian Y, Vega-Valle E, Taskar KS, Rudraraju V, Mittapalli RK, Gaasch JA, Bohn KA, Thorsheim HR, Liewehr DJ, Davis S, Reilly JF, Walker R, Bronder JL, Feigenbaum L, Steinberg SM, Camphausen K, Meltzer PS, Richon VM, Smith QR, Steeg PS (2009) Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin Cancer Res 15(19):6148–6157PubMedCrossRefGoogle Scholar
  75. 75.
    Gril B, Palmieri D, Bronder JL, Herring JM, Vega-Valle E, Feigenbaum L, Liewehr DJ, Steinberg SM, Merino MJ, Rubin SD, Steeg PS (2008) Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J Natl Cancer Inst 100(15):1092–1103PubMedCrossRefGoogle Scholar
  76. 76.
    Graesslin O, Abdulkarim BS, Coutant C, Huguet F, Gabos Z, Hsu L, Marpeau O, Uzan S, Pusztai L, Strom EA, Hortobagyi GN, Rouzier R, Ibrahim NK (2010) Nomogram to predict subsequent brain metastasis in patients with metastatic breast cancer. J Clin Oncol 28(12):2032–2037PubMedCrossRefGoogle Scholar
  77. 77.
    Muldoon LL, Soussain C, Jahnke K, Johanson C, Siegal T, Smith QR, Hall WA, Hynynen K, Senter PD, Peereboom DM, Neuwelt EA (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25(16):2295–2305PubMedCrossRefGoogle Scholar
  78. 78.
    Bellavance MA, Blanchette M, Fortin D (2008) Recent advances in blood-brain barrier disruption as a CNS delivery strategy. AAPS J 10(1):166–177PubMedCrossRefGoogle Scholar
  79. 79.
    Pardridge WM (2008) Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses. Bioconjug Chem 19(7):1327–1338PubMedCrossRefGoogle Scholar
  80. 80.
    de Boer JP, Abbink JJ, Brouwer MC, Meijer C, Roem D, Voorn GP, Lambers JW, van Mourik JA, Hack CE (1991) PAI-1 synthesis in the human hepatoma cell line HepG2 is increased by cytokines–evidence that the liver contributes to acute phase behaviour of PAI-1. Thromb Haemost 65(2):181–185PubMedGoogle Scholar
  81. 81.
    Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK (2008) LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev 88(3):887–918PubMedCrossRefGoogle Scholar
  82. 82.
    Pan W, Kastin AJ, Zankel TC, van KP, Terasaki T, Bu G (2004) Efficient transfer of receptor-associated protein (RAP) across the blood-brain barrier. J Cell Sci 117(Pt 21):5071–5078Google Scholar
  83. 83.
    Emanuel SL, Hughes TV, Adams M, Rugg CA, Fuentes-Pesquera A, Connolly PJ, Pandey N, Moreno-Mazza S, Butler J, Borowski V, Middleton SA, Gruninger RH, Story JR, Napier C, Hollister B, Greenberger LM (2008) Cellular and in vivo activity of JNJ-28871063, a nonquinazoline pan-ErbB kinase inhibitor that crosses the blood-brain barrier and displays efficacy against intracranial tumors. Mol Pharmacol 73(2):338–348PubMedCrossRefGoogle Scholar
  84. 84.
    Kong LY, bou-Ghazal MK, Wei J, Chakraborty A, Sun W, Qiao W, Fuller GN, Fokt I, Grimm EA, Schmittling RJ, Archer GE, Jr., Sampson JH, Priebe W, Heimberger AB (2008) A novel inhibitor of signal transducers and activators of transcription 3 activation is efficacious against established central nervous system melanoma and inhibits regulatory T cells. Clin Cancer Res 14(18):5759–5768PubMedCrossRefGoogle Scholar
  85. 85.
    Hoffmann J, Fichtner I, Lemm M, Lienau P, Hess-Stumpp H, Rotgeri A, Hofmann B, Klar U (2009) Sagopilone crosses the blood-brain barrier in vivo to inhibit brain tumor growth and metastases. Neuro Oncol 11(2):158–166PubMedCrossRefGoogle Scholar
  86. 86.
    Seike T, Fujita K, Yamakawa Y, Kido MA, Takiguchi S, Teramoto N, Iguchi H, Noda M (2011) Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin Exp Metastasis 28(1):13–25PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Pharma Research and Early DevelopmentRoche Diagnostics GmbHPenzbergGermany

Personalised recommendations