Eutrophication of Lakes

  • Marcos Callisto
  • Joseline Molozzi
  • José Lucena Etham Barbosa


Human activities and the unplanned occupation of land in aquatic basins can drive cultural eutrophication, which leads to the degradation of water quality, an increase in the concentrations of nutrients, and the depletion of biodiversity. This chapter will describe the basic concepts of trophic status, ecological changes, and alterations to the composition of freshwater biodiversity, as well as current threats and global perspectives of these issues. Additionally, selected case studies from Brazilian freshwater using benthic macroinvertebrates in urban reservoirs and cyanobacteria in semiarid lentic ecosystems are discussed.


Eutrophication Human alteration Biodiversity loss 


  1. APHA (1992) Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington DCGoogle Scholar
  2. Arimoro FO, Ikomi RB, Iwegbue CMA et al (2007) Water quality changes in relation to Diptera community patterns and diversity measured at an organic effluent impacted stream in the Niger Delta, Nigeria. Ecol Indicat 7:541–552CrossRefGoogle Scholar
  3. Aroviita J, Mykra H, Hamalainen H et al (2010) River bioassessment and the preservation of threatened species: towards acceptable biological quality criteria. Ecol Indicat 10:789–795CrossRefGoogle Scholar
  4. Attayde JL, Bozelli RL (1999) Environmental heterogeneity and predictive models of chlorophyll a in a Brazilian coastal lagoon. Hydrobiologia 390:129–139CrossRefGoogle Scholar
  5. Barbosa F, Garcia FC, Marques MMGS, Nascimento FA et al (1998) Nitrogen and phosphorus balance in a eutrophic reservoir in Minas Gerais: a first approach. Rev Brasil Biol 58:233–239Google Scholar
  6. Barbosa FAR, Maia-Barbosa PM, Rocha LA, Marques MM, Callisto M et al (1999) Human impacts and freshwater biodiversity in the Rio Doce, southeast Brazil: the watershed as the study unit. Proc. of the 8th. Internat. Symp. on Conservation and Management of Lakes, ILEC, Copenhagen pp 575–577Google Scholar
  7. Barbosa JEL, Brasil J, Montinegro AKM, França JC, Oliveira FM et al (2010) Variação Interanual do Fitoplâncton e Variáveis Limnológicas em um Açude Raso, Típico do Semi-Árido Brasileiro (Açude Taperoá II, Paraíba). In Moura AN, Araújo EL, Bittencourt-Oliveira MC, Pimentel RMM, Albuquerque UP (Orgs.). Reservatórios do Nordeste do Brasil: Biodiversidade, Ecologia e Manejo. Recife: NUPEEA Núcleo de Publicações em Ecologia e Etnobotânica Aplicada vol 1(1), pp 81–114Google Scholar
  8. Barbour MT, Gerritsen J, Griffith GE, Frydenborg R, McCarron E, White JS, Batian ML et al (1996) A framework for biological criteria for Florida streams using benthic macroinvertebrates. J North Amer Benthol Soc 5:179–184Google Scholar
  9. Blahová L, Babica P, Adamovský O, Kohoutek J, Marsálek B, Bláha L (2008) Analyses of cyanobacterial toxins (microcystins, cylindrospermopsin) in the reservoirs of the Czech Republic and evauation of health risks. Environ Chem Lett 6:223–227CrossRefGoogle Scholar
  10. Bonada N, Prat N, Resh VH, Statzner B et al (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Ann Rev Entomol 51:495–523CrossRefGoogle Scholar
  11. Borges PAF, Train S, Dias JD, Bonecker C et al (2010) Effects of fish farming on plankton structure in a Brazilian tropical reservoir. Hydrobiologia 661(1):323–323CrossRefGoogle Scholar
  12. Bouvy M, Molica R, Oliveira SD, Marinho M, Becker B et al (1999) Dynamics of a toxic cyanobacterial bloom Cylindrospermopsis raciborskii in a shallow reservoir in the semi-arid northeast Brazil. Aquat Microb Ecol 20:285–297CrossRefGoogle Scholar
  13. Bouvy M, Falcão D, Marinho M, Pagano M, Moura A et al (2000) Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during 1998 drought. Aquat Microb Ecol 23:13–27CrossRefGoogle Scholar
  14. Brooks SJ, Bennion H, Birks JB et al (2001) Tracing lake trophic history with a chironomid-total phosphorus interence model. Freshwat Biol 46:513–533CrossRefGoogle Scholar
  15. Callisto M, Moretti M, Goulart M et al (2001) Macroinvertebrados bentônicos como ferramenta para avaliar a saúde de riachos. Revista Brasileira de Recursos Hídricos 6(1):71–82Google Scholar
  16. Callisto M, Goulart M, Medeiros A, Moreno P, Rosa CA et al (2004) Diversity assessment of benthic macroinvertebrates, yessts, and microbiological indicators along a longitudinal gradient in Serra Cipó, Brazil. Braz J Biol 64(4):743–755CrossRefGoogle Scholar
  17. Callisto M, Goulart M, Barbosa FAR, Rocha O et al (2005) Biodiversity assessment of benthic macroinvertebrates along a reservoir cascade in the lower São Francisco river (Northeastern Brazil). Braz J Biol 65(2):1–6Google Scholar
  18. Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:361–369CrossRefGoogle Scholar
  19. Chorus I, Bartram J (1999) Toxic cyanobacteria in water. E & FN Spon, Londres. p 416Google Scholar
  20. Clementes R, Koh LP, Lee TM, Meier R, Li D et al (2006) Importance of reservoirs for the conservation of freshwater molluscs in a tropical urban landscape. Biolog Conserv 128:136–146CrossRefGoogle Scholar
  21. COPASA CdeSdeMGerais (2000) Levantamento batimétrico do reservatório Serra Azul Mateus Leme e Vargem das Flores—MG. Hydrologic Data Collection Engenharia S/C Ltda, p 14Google Scholar
  22. Costa IAS, Azevedo SMFO, Senna PAC, Bernardo RR, Costa SM, Chellappa NT et al (2006) Occurrence of toxin-producing cyanobacteria blooms in a Brazilian Semi-arid reservoir. Brazil J Biol 66(1):29–41Google Scholar
  23. Cranston PS (1995) Introduction. In Armitage PD, Cranston PS, Pinder LCV (eds.) The chironomidae: biology and ecology of mon-biting midges. Chapman & Hall, London, pp 1–7Google Scholar
  24. Cranston PS, Nolte U (1996) Fissimentum, a new genus of drought-tolerant Chironomini (Diptera, Chironomidae) from the Americas and Australia. Ent. News 107(1):1–15Google Scholar
  25. Dantas EW, Bittencourt-Oliveira MC, Moura AN et al (2010) Spatial-temporal variation in coiled and straight morphotypes of Cylindrospermopsis raciborskii (Wolsz) Seenaya et Subba Raju (Cyanobacteria). Act Botanic Brasílic (Impresso) l(24):585–591Google Scholar
  26. Davies SP, Jackson SK (2006) The biological condition gradient: a descriptive model for interpreting change in aquatic ecosystems. J Appl Ecol 16:1251–1266CrossRefGoogle Scholar
  27. Dillon PJ, Rigler FH (1974) A test of a simple nutrient budget model predicting the phosphorus concentration in lake water. J Fish Res Board Can 31:1771–1778CrossRefGoogle Scholar
  28. Dudgeon D (1989) Ecological strategies of Hong Kong Thiaridae (Gastropoda: Prosobranchia). Malacolog Rev 22:39–53Google Scholar
  29. Esteves FA (1988) Considerações sobre a aplicação da tipologia de lagos temperados a lagos tropicais. Act Limnolog Brasil 2:3–28Google Scholar
  30. Esteves FA (2011) Fundamentos de Limnologia. 3rd Ed. Rio de Janeiro: Interciência, pp 790Google Scholar
  31. Feio MJ, Reynoldson TB, Graça MAS et al (2006) The influence of taxonomic level on the performance of a predictive model for water quality assessment. Canadian J Fish Aquat Sci 63:367–376CrossRefGoogle Scholar
  32. Ferrão-Filho AS, Molica RJR, Azevedo SMFO et al (2009) Ecologia, Ecofisiologia e Toxicologia de Cianobactérias. Oecolog Brasilien 13:225–228CrossRefGoogle Scholar
  33. Fleituch T, Soszka H, Kudelska D, Kownacki A et al (2002) Macroinvertebrates as indicators of water quality in rivers: a scientific basis for Polish standard method. Arch Hydrobiol 13:225–239Google Scholar
  34. Furey PC, Nordin N, Mazumder A et al (2006) Littoral benthic macroinvertebrates under contrasting drawdown in a reservoir and a natural lake. J North Amer Benthol Soc 25:19–31CrossRefGoogle Scholar
  35. Golterman HL, Clymo RS, Ohnstad MAM et al (1978) Methods for physical and chemical analysis of freshwaters. 2nd Ed. Blackwell Scientific Publications Oxford (IBP 8), pp 324–343Google Scholar
  36. Guo L, Zhongjie L, Xie P, Ni L (2009) Assessment effects of cage culture on nitrogen and phosphorus dynamics in relation to fallowing in a shallow lake in China. Aquacul Inter 17:229–241CrossRefGoogle Scholar
  37. Henry R (1993) Thermal regime and stability of Jurumirim Reservoir (Paranapanema River, São Paulo, Brazil). Int Rev Gesamt Hydrobiol 78:501–511CrossRefGoogle Scholar
  38. Huszar VLM, Silva LHS, Marinho M, Domingos P, Anna CLS et al (2000) Cyanoprokaryote assemblages in eight productive tropical Brazilian waters. Hydrobiologia 424:67–77CrossRefGoogle Scholar
  39. Huszar VLM, Caraco NF, Roland F, Cole J et al (2006) Nutrient—chlorophyll relationships in tropical–subtropical lakes: do temperate models fit? Biogeochemistry 79:239–250CrossRefGoogle Scholar
  40. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108CrossRefGoogle Scholar
  41. Junqueira MV, Amarante MC, Dias CFS, França ES et al (2000) Biomonitoramento da qualidade das águas da Bacia do Alto Rio das Velhas (MG/Brasil) através de macroinvertebrados. Acta Limnol Bras 12:73–87Google Scholar
  42. Lazzaro X, Bouvy M, Ribeiro-Filho RA, Oliveira VS, Sales LT, Vasconcelos ARM, Mata MR et al (2003) Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs. Fresh Wat Biol 48:649–668CrossRefGoogle Scholar
  43. Leunda PM, Oscoz J, Miranda R, Arino AH et al (2009) Longitudinal and seasonal variation of the benthic macroinvertebrate community and biotic indices in an undisturbed Pyrenean river. Ecolog Indicat 9:52–63CrossRefGoogle Scholar
  44. Maberly SC, King L, Dent MM, Jones RI, Gibson CE et al (2002) Nutrient limitation of phytoplankton and periphyton growth in upland lakes. Fresh Biol 47:2136–2152CrossRefGoogle Scholar
  45. Martins-Montanholi MC, Takeda AM (2001) Spatial and temporal Variations of oligochaetas of the Ivinhema River and Patos Lakes in the Upper Paraná River Basin, Brazil. Hydrobiologia 463:197–205CrossRefGoogle Scholar
  46. Merritt RW, Cummins KW (1996) An introduction to the aquatic insects of North America. 3rd Ed. Kendall/Hunt Publishing Company. Dubuque. p 722Google Scholar
  47. Molica RJR, Oliveira EJA, Carvalho PVVC, Costa ANSF, Cunha MCC, Melo GL, Azevedo SMFO et al (2005) Occurence of saxitoxins and an anatoxin-a(s)-like anticholinesterase in a Brazilian drinking water supply. Harmful Algae 4(4):743–753CrossRefGoogle Scholar
  48. Mugnai R, Nessimian JL, Baptista DF et al (2010) Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro. Technical Books Editora, Rio de Janeiro, p 174Google Scholar
  49. Naumann E (1921) Einige Grundlinien der Regionalen Limnologie—Lund, Lunds Universitets, Arsskript N.I. p 17Google Scholar
  50. Naumann E (1930) Einfurhrung in die Bodenkunde der Seen. Stuttgart, E Schweigerbart Verlag, p 126Google Scholar
  51. OECD (1982) Eutrophication of waters: monitoring, assessment and control. Organization for Economics Co-operation and Development, ParisGoogle Scholar
  52. Padisák J (1997) Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raja, an expending highly adaptative cyanobacterium: wordlwide distribution and review of its ecology. Arch für Hydrobiol 107:563–593Google Scholar
  53. Panosso R, Costa IAS, Souza NR, Attayde JL, Cunha SRS, Gomes FCF et al (2007) Cianobactérias e cianotoxinas em reservatórios do Estado do Rio Grande do Norte e o potencial controle das florações pela tilápia do Nilo (Oreochromis niloticus). Oecolog Brasilien 11(3):433–449CrossRefGoogle Scholar
  54. Peterson A (1960) Larvae of insects. An introduction to Neartic species. Columbus, Ohio, p 250Google Scholar
  55. Pinto-Coelho RM, Brighenti LS, Bezerra-Neto JF, Morais Jr CA, Gonzaga AV et al (2010) Effects of sampling effort on the estimation of spatial gradientes in a tropical reservoir impacted by an oil refinery. Limnologica 40:126–133CrossRefGoogle Scholar
  56. Prat N, Sanz F, Martínez-Ansemil E et al (1992) El bentos profundo y litoral de uma cadena de três embalses Espanoles del Rio Guadiana (SW Espana). Limnetica 7:133–155Google Scholar
  57. Puntí T, Rieradevall M, Prat N et al (2009) Environmental factors, spatial variation, and specific requirements of Chironomidae in Mediterranean reference streams. J North Amer Bentholog Soc 28:247–265CrossRefGoogle Scholar
  58. Reynolds CS (1997) Vegetation processes in the Pelagic: A model for Ecossystems theory. Ecology Institute, oldendorf/Luhe p 371Google Scholar
  59. Reynolds TB, Norris RH, Resh VH, Day KE, Rosenberg DM et al (1997) The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. J North Amer Bentholog Soc 16:833–852CrossRefGoogle Scholar
  60. Roque FO, Siqueira T, Bini LM, Ribeiro MC, Tambosi LR, Ciocheti G, Trivinho-Strixino S et al (2010) Untangling associations between chironomid taxa in Neotropical streams using local and landscape filters. Freshwat Biol 55:847–865CrossRefGoogle Scholar
  61. Rosenberg DM (1992) Freshwater Biomonitoring and Chironomidae. Nether J Aquat Ecol 26:101CrossRefGoogle Scholar
  62. Rueda F, Moreno-Ostos E, Armengol J et al (2006) The residence time of river water in reservoirs. Ecolog Modell 191:260–274CrossRefGoogle Scholar
  63. Ruse L (2010) Classification of nutrient impact on lakes using the chironomid pupal exuvial technique. Ecolog Indicat 10:594–601CrossRefGoogle Scholar
  64. Sánches-Carrillo S, Alatore LC, Sanchés –Andrés R, Garatuza-Payán J et al (2007) Eutrofication and sedimentation patterns in complete exploitation of water resources scenarios: An Example from northwestern semi-arid Mexico. Environ Monit Asses 132:377–393CrossRefGoogle Scholar
  65. Santos CM, Eskinazi-Sant’Anna EM (2010) The introduced snail Melanoides tuberculatus (Muller, 1774) (Mollusca: Thiaridae) in aquatic ecosystems of the Brazilian Semiarid Northeast (Piranhas-Assu River Basin, State of Rio Grande do Norte). Brazil J Biol 70:1–7CrossRefGoogle Scholar
  66. Santos CM, Ferreira RAR, Henry R et al (2006) Alterações na Organização da Comunidade Bentônica no Complexo Canoas (Rio Paranapanema-SP) Durante as Fases Pré e Pós-enchimento. In: Nogueira MG, Henry R, Jorcin A (eds.) Ecologia de Reservatórios: impactos potenciais, ações de manejo e sistemas em cascata. São Carlos: RiMA. pp 183–204Google Scholar
  67. Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24(4):201–207CrossRefGoogle Scholar
  68. Sporka F, Viek HE, Bulankova E, Krno L et al (2006) Influence of seasonal variation on bioassessment of streams using macroinvertebrates. Hydrobiologia 566:543–555CrossRefGoogle Scholar
  69. Starling F, Lazzaro X, Cavalcanti C, Moreira R et al (2002) Contribution of omnivorous tilapia to eutrophication of a shallow tropical reservoir: evidence from a fish kill. Fresh Wat Biol 47(12):2443–2452CrossRefGoogle Scholar
  70. Straskraba M, Tundisi JG (1999) Reservoir water management. Guidelines of lakes management. Kusatsu: International Lake Environment Committee (ILEC), 9:229Google Scholar
  71. Takeda AM, Shimizu GY, Higuti J et al (1990) Zoobentos de uma lagoa marginal (lagoa Fechada, rio Baia, Alto Paraná, PR). Ciência e Cultura 42:1003–1007Google Scholar
  72. Thienemann A (1913) Der Zusammenhong Zwischen dem Sauerstoff des Wassers und der Zusammensetzung der Tiefenfauna Unserer Seen. Int Rev Ges Hydrobiol Hydrogr 6:245–249CrossRefGoogle Scholar
  73. Thienemann A (1928) Der Sauerstoff in eutrophen und oligotrophen Seen. Ein Beitrag jursestypenlehre. Die Binnengewasser IV. Stuttgart, E. EchweizerbartGoogle Scholar
  74. Thornton KW (1990) Perspectives on reservoir limnology. In Thornton KW, Kimmel BL, Payne FE (eds) Reservoir limnology: ecological perspectives. Wiley–InterscienceGoogle Scholar
  75. Thornton JA, Rast W (1989) Preliminary observations on nutrient enrichment of semi-arid, man-made lakes in the northern and southern hemisphere. Lake Reserv Manage 5:59–66CrossRefGoogle Scholar
  76. Thornton JA, Rast W (1993) A test of hypotheses relating to the comparative limnology and assessment of eutrophication in semi-arid, man-made lakes. In: Straskraba M, Tundisi J, Duncan A (eds.) Comparative reservoir limnology and water quality management, developments in hydrobiology, vol. 77. Kluwer, Dordrecht, pp 1–24Google Scholar
  77. Toledo Jr AP, Talarico M, Chinez SJ, Agudo EG et al (1983) A aplicação de modelos simplificados para a avaliação de processo da eutrofização em lagos e reservatórios tropicais. In: Anais do 12º Congresso Brasileiro de Engenharia Sanitária. Camboriú. Associação Brasileira de Engenharia Sanitária. Camboriú (SC) p 34Google Scholar
  78. Trivinho-Strixino S (2011) Larvas de Chironomidae. Guida de identificação. São Carlos. Departamento Hidrologia e Entomologia Aquática/UFSCar. p 371Google Scholar
  79. Tundisi GJ, Matsumura-Tundisi T (2003) Integration of research and management in optimizing multiple uses of reservoir: the experience in South America and Brazilian case studies. Hydrobiologia 500:231–242CrossRefGoogle Scholar
  80. Tundisi JG, Matsumura-Tundisi T, Calijuti MC et al (1990) Limnology and management of reservoirs in Brazil. In: Straskrabra M, Tundisi JG, Duncan A (eds.) 1993 Comparative Reservoir Limnology and Water Quality Management, Kluwer Academic Publishers, pp 1–24Google Scholar
  81. Tundisi JG, Matsumura-Tundisi T, Calijuri MC, Novo EML et al (1991) Comparative limnology of reservoirs in the Tietê river, S. Paulo State. Verh Inter Verein Limnol 24:1489–1496Google Scholar
  82. Tundisi JG, Matsumura-Tundisi T, Calijuri MC et al (1993) Limnology and mangement of reservoir in Brazil. In: Straskraba M, Tundisi JG, Duncan A (Eds.) Comparative reservoir limnology and water quality mangement. Kluwer Academic Publishers, Dordrecht, pp 25–55Google Scholar
  83. Valdovinos C, Figueroa R (2000) Benthic communty metabolism and trophic conditions of four South Americam lakes. Hydrobiologia 429:151–156CrossRefGoogle Scholar
  84. Vasconcelos JF, Barbosa JEL, Diniz CR, Ceballos BSO et al (2011) Cianobactérias em reservatórios do Estado da Paraíba: ocorrência, toxicidade e fatores reguladores. Boletim da Socied Brasil de Limnol 39(2):1–20Google Scholar
  85. Watson SB, Mccauley E, Downing JA et al (1997) Paterns in phytoplankton-methodik. Verh inter Verein Limnol 9:7–38Google Scholar
  86. Wetzel RG (1990) Reservoir Ecossystems: Conclusions and Speculations: In Thornton KW, Kimmel BL, Payne FE (Eds) Reservoir Limnology: Ecologica Perspectives. Wiley—InterscienceGoogle Scholar
  87. Yanling T, Guangxini Z, Yuesuo Y, Yingzhis G et al (2009) Identifying key environmental factors influencing spatial variation of water quality in Upper Shitoukoumen Reservoir Basin in Jilin Province, China. China Geogr Inform Sci 4:365–374Google Scholar
  88. Zhang M, Shao M, Xu Y, Cai Q et al (2010) Effect of hydrological regime on the macroinvertebrate community in Three-Georges Reservoir. Quaternary International. In Press. Corrected Proof. Available online 11 January, China 2010Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Marcos Callisto
    • 1
  • Joseline Molozzi
    • 2
  • José Lucena Etham Barbosa
    • 2
  1. 1.Depto Biologia Geral, Lab Ecologia de BentosUniversidade Federal de Minas Gerais, ICBBelo HorizonteBrazil
  2. 2.Dep. Biologia/PPGEC. Av. das BaraúnasUniversidade Estadual da Paraíba, CCBS, 351, Bairro UniversitárioCampina GrandeBrazil

Personalised recommendations