Advertisement

Ultrafast and Nonlinear Plasmon Dynamics

  • Markus B. Raschke
  • Samuel Berweger
  • Joanna M. Atkin
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 15)

Abstract

The interaction of light with a metal mediated by surface plasmon polaritons provides for sub-diffraction limited optical confinement and control. While the relationship of the linear plasmon response to the underlying elementary electronic excitations of the metal is well understood in general, the corresponding ultrafast and nonlinear plasmon interactions could provide further enhanced functionalities. However, while the ultrafast and nonlinear optics of metals is an advanced field, the understanding of the related plasmonic properties is less developed. Here we discuss ultrafast and nonlinear wave-mixing properties of metals and metallic nanostructures in terms of the elementary optical interactions related to electronic band structure, plasmon resonances, and geometric selection rules. These properties form the fundamental basis of the nonlinear plasmonic light-matter interaction. The understanding of these fundamental properties, together with the ability to measure and control the typically fast femtosecond intrinsic and extrinsic dephasing times, is important for the development of applications such as enhanced nano-imaging, coherent control of individual quantum systems, strong light-matter interaction and extreme nonlinear optics, and nano-photonic devices.

Keywords

Nonlinear optics Metal optics Plasmonics Ultrafast dynamics 

Notes

Acknowledgments

Funding was provided by the National Science Foundation (NSF CAREER Grant CHE 0748226). Part of the work was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility from DOE’s Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US DOE under the contract DEAC06-76RL01830.

References

  1. 1.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, New York, 1987)Google Scholar
  2. 2.
    M. Kerker, The Scattering of Light, and Other Electromagnetic Radiation (Academic Press, New York, 1969)Google Scholar
  3. 3.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)Google Scholar
  4. 4.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Brooks Cole, Belmont, 1976)Google Scholar
  5. 5.
    F. Ladstädter, U. Hohenester, P. Puschnig, C. Ambrosch-Draxl, Phys. Rev. B 70, 235125 (2004)CrossRefGoogle Scholar
  6. 6.
    D.J. Roaf, Philos. T. R. Soc. A 255(1052), 135 (1962)CrossRefGoogle Scholar
  7. 7.
    A. Sommerfeld, Z. Phys. A 47(1), 1 (1928)Google Scholar
  8. 8.
    M. Dressel, G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, New York, 2002).Google Scholar
  9. 9.
    P. Johnson, R. Christy, Phys. Rev. B 6, 4370 (1972)CrossRefGoogle Scholar
  10. 10.
    R.L. Olmon, B. Slovick, T.W. Johnson, D. Shelton, S.H. Oh, G.D. Boreman, M.B. Raschke, Phys. Rev. B 86, 235147 (2012)CrossRefGoogle Scholar
  11. 11.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2008)Google Scholar
  12. 12.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science, vol. 25 (Springer, Berlin, 1995)CrossRefGoogle Scholar
  13. 13.
    C. Ciracì, R.T. Hill, J.J. Mock, Y. Urzhumov, A.I. Fernández-Domínguez, S.A. Maier, J.B. Pendry, A. Chilkoti, D.R. Smith, Science 337(6098), 1072 (2012)CrossRefGoogle Scholar
  14. 14.
    G. Mie, Ann. Phys. 330, 377 (1908)CrossRefGoogle Scholar
  15. 15.
    H.U. Yang, S. Berweger, J.M. Atkin, M.B. Raschke (in preparation)Google Scholar
  16. 16.
    S. Link, C. Burda, M.B. Mohamed, B. Nikoobakht, M.A. El-Sayed, Phys. Rev. B 61(9), 6086 (2000)CrossRefGoogle Scholar
  17. 17.
    G.V. Hartland, Chem. Rev. 111(6), 3858 (2011)CrossRefGoogle Scholar
  18. 18.
    C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, Phys. Rev. Lett. 88(7), 077402 (2002)CrossRefGoogle Scholar
  19. 19.
    M. Liu, M. Pelton, P. Guyot-Sionnest, Phys. Rev. B 79, 035418 (2009)CrossRefGoogle Scholar
  20. 20.
    T.V. Shahbazyan, I.E. Perakis, J.Y. Bigot, Phys. Rev. Lett. 81, 3120 (1998)CrossRefGoogle Scholar
  21. 21.
    R. Boyd, Nonlinear Optics (Academic Press, New York, 2003)Google Scholar
  22. 22.
    Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984)Google Scholar
  23. 23.
    M.B. Raschke, M. Hayashi, S.H. Lin, Y.R. Shen, Chem. Phys. Lett. 359(5–6), 367 (2002)CrossRefGoogle Scholar
  24. 24.
    S. Jha, Phys. Rev. 140(6A), 2020 (1965)Google Scholar
  25. 25.
    N. Bloembergen, R.K. Chang, S.S. Jha, C.H. Lee, Phys. Rev. 174, 813 (1968)CrossRefGoogle Scholar
  26. 26.
    J. Rudnick, E.A. Stern, Phys. Rev. B 4, 4274 (1971)CrossRefGoogle Scholar
  27. 27.
    J.E. Sipe, V.C.Y. So, M. Fukui, G.I. Stegeman, Phys. Rev. B 21, 4389 (1980)CrossRefGoogle Scholar
  28. 28.
    A. Liebsch, W.L. Schaich, Phys. Rev. B 40, 5401 (1989)CrossRefGoogle Scholar
  29. 29.
    C.M. Li, L.E. Urbach, H.L. Dai, Phys. Rev. B 49, 2104 (1994)CrossRefGoogle Scholar
  30. 30.
    G. Petrocelli, S. Martellucci, R. Francini, Appl. Phys. A Mater. Sci. Proces. 56, 263 (1993)CrossRefGoogle Scholar
  31. 31.
    E.K.L. Wong, G.L. Richmond, J. Chem. Phys. 99(7), 5500 (1993)CrossRefGoogle Scholar
  32. 32.
    D. Krause, C.W. Teplin, C.T. Rogers, J. Appl. Phys. 96(7), 3626 (2004)CrossRefGoogle Scholar
  33. 33.
    H.J. Simon, D.E. Mitchell, J.G. Watson, Phys. Rev. Lett. 33, 1531 (1974)CrossRefGoogle Scholar
  34. 34.
    T.Y.F. Tsang, Opt. Lett. 21(4), 245 (1996)CrossRefGoogle Scholar
  35. 35.
    F. De Martini, Y.R. Shen, Phys. Rev. Lett. 36, 216 (1976)CrossRefGoogle Scholar
  36. 36.
    K. Ujihara, Opt. Commun. 42(1), 1 (1982)CrossRefGoogle Scholar
  37. 37.
    N. Rotenberg, M. Betz, H.M. van Driel, Phys. Rev. Lett. 105, 017402 (2010)CrossRefGoogle Scholar
  38. 38.
    A.T. Georges, N.E. Karatzas, Phys. Rev. B 85, 155442 (2012)CrossRefGoogle Scholar
  39. 39.
    J. Renger, R. Quidant, N. van Hulst, S. Palomba, L. Novotny, Phys. Rev. Lett. 103, 266802 (2009)CrossRefGoogle Scholar
  40. 40.
    M. Fukui, J. Sipe, V. So, G. Stegeman, Solid State Commun. 27(12), 1265 (1978)CrossRefGoogle Scholar
  41. 41.
    G.I. Stegeman, J.J. Burke, D.G. Hall, Appl. Phys. Lett. 41(10), 906 (1982)CrossRefGoogle Scholar
  42. 42.
    Q. Zhang, K. Lin, Y. Luo, Opt. Express 19(6), 4991 (2011)CrossRefGoogle Scholar
  43. 43.
    N.B. Grosse, J. Heckmann, U. Woggon, Phys. Rev. Lett. 108, 136802 (2012)CrossRefGoogle Scholar
  44. 44.
    V.M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-dielectric Films, vol. 158 (Springer Tracts in Modern Physis, Heidelberg, 2000)Google Scholar
  45. 45.
    E.L. Ru, J. Grand, N. Felidj, J. Aubard, G. Levi, A. Hohenau, J. Krenn, E. Blackie, P. Etchegoin, J. Phys. Chem. C 112, 8117 (2008)CrossRefGoogle Scholar
  46. 46.
    M. Moskovits, Rev. Mod. Phys. 57, 783 (1985)CrossRefGoogle Scholar
  47. 47.
    A. Wokaun, J.G. Bergman, J.P. Heritage, A.M. Glass, P.F. Liao, D.H. Olson, Phys. Rev. B 24, 849 (1981)CrossRefGoogle Scholar
  48. 48.
    C.K. Chen, A.R.B. de Castro, Y.R. Shen, Phys. Rev. Lett. 46, 145 (1981)CrossRefGoogle Scholar
  49. 49.
    D.S. Chemla, J.P. Heritage, P.F. Liao, E.D. Isaacs, Phys. Rev. B 27, 4553 (1983)CrossRefGoogle Scholar
  50. 50.
    F.X. Wang, F.J. Rodriguez, W.M. Albers, M. Kauranen, New J. Phys. 12, 063009 (2010)CrossRefGoogle Scholar
  51. 51.
    S. Roke, G. Gonella, Ann. Rev. Phys. Chem. 63(1), 353 (2012)CrossRefGoogle Scholar
  52. 52.
    J.I. Dadap, J. Shan, T.F. Heinz, J. Opt. Soc. Am. B 21, 1328 (2004)CrossRefGoogle Scholar
  53. 53.
    C. Neacsu, G. Reider, M. Raschke, Phys. Rev. B 71(20), 201402 (2005)CrossRefGoogle Scholar
  54. 54.
    S. Roke, W.G. Roeterdink, J.E.G.J. Wijnhoven, A.V. Petukhov, A.W. Kleyn, M. Bonn, Phys. Rev. Lett. 91, 258302 (2004)CrossRefGoogle Scholar
  55. 55.
    J. Nappa, I. Russier-Antoine, E. Benichou, C. Jonin, P.F. Brevet, J. Chem. Phys. 125(18), 184712 (2006)CrossRefGoogle Scholar
  56. 56.
    R. Olmon, M. Raschke, Nanotechnology 23, 444001 (2012)CrossRefGoogle Scholar
  57. 57.
    T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, H. Giessen, Phys. Rev. Lett. 106, 133901 (2011)CrossRefGoogle Scholar
  58. 58.
    M. Danckwerts, L. Novotny, Phys. Rev. Lett. 98, 026104 (2007)CrossRefGoogle Scholar
  59. 59.
    M. Kauranen, A.V. Zayats, Nat. Photon. 6(11), 737 (2012)CrossRefGoogle Scholar
  60. 60.
    C. Timm, K.H. Bennemann, J. Phys. Condens. Matter. 16(4), 661 (2004)CrossRefGoogle Scholar
  61. 61.
    R. Trebino, Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, New York, 2002)Google Scholar
  62. 62.
    A. Anderson, K.S. Deryckx, X.G. Xu, G. Steinmeyer, M.B. Raschke, Nano Lett. 10, 2519 (2010)CrossRefGoogle Scholar
  63. 63.
    H. Petek, S. Ogawa, Prog. Surf. Sci. 56(4), 239 (1997)CrossRefGoogle Scholar
  64. 64.
    A.J. Babadjanyan, N.L. Margaryan, K.V. Nerkararyan, J. Appl. Phys. 87(8), 3785 (2000)CrossRefGoogle Scholar
  65. 65.
    M.I. Stockman, Phys. Rev. Lett. 93, 137404 (2004)CrossRefGoogle Scholar
  66. 66.
    M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, D.V. Voronine, Proc. Nat. Acad. Sci. 107, 5329 (2010)CrossRefGoogle Scholar
  67. 67.
    S. Berweger, J.M. Atkin, X.G. Xu, R.L. Olmon, M.B. Raschke, Nano Lett. 11, 4309 (2011)CrossRefGoogle Scholar
  68. 68.
    B. Xu, J.M. Gunn, J.M.D. Cruz, V.V. Lozovoy, M. Dantus, J. Opt. Soc. Am. B 23(4), 750 (2006)CrossRefGoogle Scholar
  69. 69.
    V. Kravtsov, J.M. Atkin, M.B. Raschke, Opt. Lett. 38(8), 1322 (2013)CrossRefGoogle Scholar
  70. 70.
    A.M. Weiner, Rev. Sci. Intr. 71, 1929 (2000)CrossRefGoogle Scholar
  71. 71.
    A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber, Science 282(5390), 919 (1998)CrossRefGoogle Scholar
  72. 72.
    C.C. Neacsu, B.B. van Aken, M. Fiebig, M.B. Raschke, Phys. Rev. B 79(10), 100107 (2009)CrossRefGoogle Scholar
  73. 73.
    A. Kubo, K. Onda, H. Petek, Z. Sun, Y.S. Jung, H.K. Kim, Nano Lett. 5, 1123 (2005)CrossRefGoogle Scholar
  74. 74.
    M.B. Raschke, Annalen der Physik 525(3), 40 (2013)CrossRefGoogle Scholar
  75. 75.
    M. Sivis, M. Duwe, B. Abel, C. Ropers, Nature 485, 7397 (2012)CrossRefGoogle Scholar
  76. 76.
    C. Ropers, D.R. Solli, C.P. Schulz, C. Lienau, T. Elsaesser, Phys. Rev. Lett. 98, 043907 (2007)CrossRefGoogle Scholar
  77. 77.
    M.L. Juan, M. Righini, R. Quidant, Nat. Photon. 5, 349 (2011)CrossRefGoogle Scholar
  78. 78.
    P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, C. Lienau, ACS Nano 4(12), 7559 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Markus B. Raschke
    • 1
  • Samuel Berweger
    • 1
  • Joanna M. Atkin
    • 1
  1. 1.Department of Physics, Department of Chemistry, and JILAUniversity of ColoradoBoulderUSA

Personalised recommendations