Advertisement

Occurrence, Sources and Pathways of Antimony and Silver in an Urban Catchment

  • Sophie AyraultEmail author
  • Cindy Rianti Priadi
  • Pierre Le Pape
  • Philippe Bonté
Conference paper

Abstract

The recently introduced and increasing uses of silver (Ag) and antimony (Sb) have resulted in an increasing concern on their impacts to the environment. Nevertheless, little information can be found about anthropogenic impacts on the geochemical behaviour of such trace metals in urban river. In the course of our studies dedicated to the Seine River basin, France (67,400 km2), a large set of data was collected. Silver and antimony inputs to the Seine River Basin were estimated using three relevant sources: atmospheric deposition, waste water treatment plants effluents and combined sewer overflows. The Ag and Sb dissolved/solid partition in the river was also estimated on an annual basis. Results showed that Ag output river flux cannot be balanced with the input fluxes, unless to consider another source, which could be the erosion of contaminated soils. In opposite, the Sb budget is well balanced, with atmospheric deposition dominating the input fluxes to the river. The Ag and Sb geochemical behaviors (i.e., their dissolved/solid partition) are highly contrasted, especially for Sb, which dissolved/solid partition is even more fluctuant depending on the emission route.

Keywords

Atmospheric Deposition Downstream Site Waste Water Treatment Plant Input Flux Combine Sewer Overflow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank J. Gaspéri and G. Varrault (LEESU) and V. Rocher (SIAAP) for information on wastewater volumes, and the PIREN-Seine program for funding and fruitful discussions.

References

  1. 1.
    Ayrault S, Senhou A, Moskura M, Gaudry A (2010a) Atmospheric trace element concentrations in total suspended particles near Paris, France. Atmos Environ 44:3700–3707CrossRefGoogle Scholar
  2. 2.
    Ayrault S, Priadi CR, Evrard O, Lefèvre I, Bonté P (2010b) Silver and thallium historical trends in the Seine River basin. J Environ Monitor 12:2177–2185CrossRefGoogle Scholar
  3. 3.
    Buzier R, Tusseau-Vuillemin MH, Martin dit Meriadec C, Rousselot O, Mouchel JM (2006) Trace metal speciation and fluxes within a major French wastewater treatment plant: Impact of the successive treatments stages. Chemosphere 65:2419–2426CrossRefGoogle Scholar
  4. 4.
    Chon HS, Ohandja DG, Voulvoulis N (2012) The role of sediments as a source of metals in river catchments. Chemosphere 88:1250–1256CrossRefGoogle Scholar
  5. 5.
    Dietl C, Reifenhauser W, Peichl L (1997) Association of antimony with traffic—occurrence in airborne dust, deposition and accumulation in standardized grass cultures. Sci Total Environ 205:235–244CrossRefGoogle Scholar
  6. 6.
    Estèbe A, Mouchel JM, Thévenot DR (1998) Urban runoff impacts on particulate metal concentrations in river seine. Water Air Soil Pollut 108:83–105CrossRefGoogle Scholar
  7. 7.
    Filella M, Belzile N, Chen Y-W (2002a) Antimony in the environment: a review focused on natural waters I. Occurrence. Earth-Sci Rev 57:125–176CrossRefGoogle Scholar
  8. 8.
    Filella M, Belzile N, Chen YW (2002b) Antimony in the environment: a review focused on natural waters. II. Relevant solution chemistry. Earth-Sci Rev 59:265–285CrossRefGoogle Scholar
  9. 9.
    Garcia-Alonso J, Khan FR, Misra SK, Turmaine M, Smith BD, Rainbow PS, Luoma SN, Valsami-Jones E (2011) Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor. Environ Sci Technol 45:4630–4636CrossRefGoogle Scholar
  10. 10.
    Grahn E, Karlsson S, Karlsson U, Düker A (2006) Historical pollution of seldom monitored trace elements in Sweden—Part B: sediment analysis of silver, antimony, thallium and indium. J Environ Monit 8:732–744CrossRefGoogle Scholar
  11. 11.
    Iijima A, Sato K, Yano K, Kato M, Kozawa K, Furuta N (2008) Emission factor for antimony in brake abrasion dusts as one of the major atmospheric antimony sources. Environ Sci Technol 42(8):2937–2942CrossRefGoogle Scholar
  12. 12.
    Jacobson AR, McBridea MB, Baveyea P, Steenhuis TS (2005) Environmental factors determining the trace-level sorption of silver and thallium to soils. Sci Total Environ 345:191–205CrossRefGoogle Scholar
  13. 13.
    Krupka KM, Serne RJ (2002) Geochemical factors affecting the behavior of antimony, cobalt, europium, technetium, and uranium in vadose sediments. Report of the Pacific Northwest National Laboratory (PNNL-14126), December 2002, p 95Google Scholar
  14. 14.
    Le Pape P, Ayrault S, Quantin C (2012) Trace element behavior and partition versus urbanization gradient in an urban River (Orge River, France). J Hydrol 472–473:99–110Google Scholar
  15. 15.
    Luoma SN (2008) Silver nanotechnologies and the environment: old problems or new challenges? Project on Emerging Nanotechnologies, Wilson Center and The Pew Charitable Trusts, Washington DC USA, September 2008, p 72Google Scholar
  16. 16.
    Pernet-Coudrier B, Varrault G, Saad M, Croué JP, Dignac MF, Mouchel JM (2011) Characterisation of dissolved organic matter in Parisian urban aquatic systems: predominance of hydrophilic and proteinaceous structures. Biogeochemistry 106:89–106CrossRefGoogle Scholar
  17. 17.
    Priadi C, Ayrault S, Pacini S, Bont P (2011a) Urbanization impact on metal mobility in riverine suspended sediment: Role of metal oxides. Int J Environ Sci Tech 8(1):1–18CrossRefGoogle Scholar
  18. 18.
    Priadi C, Bourgeault A, Ayrault S, Gourlay-Francé C, Tusseau-Vuillemin MH, Bonté P, Mouchel JM (2011b) Spatio-temporal variability of solid, total dissolved and labile metal: passive vs discrete sampling evaluation in river metal partitioning. J Environ Monitor 13:1470–1479CrossRefGoogle Scholar
  19. 19.
    Priadi C, Le Pape P, Morin G, Ayrault S, Maillot F, Juillot F, Llorens I, Testemale D, Proux D, Brown Jr G (2012) EXAFS and SEM evidences for zinc sulphide solid phases in riverine suspended matter from the Seine River, France. Environ Sci Technol 46(7):3712–3720CrossRefGoogle Scholar
  20. 20.
    Ratte HT (1999) Bioaccumulation and toxicity of silver coupounds: a review. Environ Toxicol Chem 18:89–108CrossRefGoogle Scholar
  21. 21.
    Sabin LD, Lim JH, Venezia MT, Winer AM, Schiffa KC, Stolzenbach KD (2006) Dry deposition and resuspension of particle-associated metals near a freeway in Los Angeles. Atmos Environ 40:7528–7538CrossRefGoogle Scholar
  22. 22.
    Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific, Oxford, p 328Google Scholar
  23. 23.
    Thévenot DR, Moilleron R, Lestel L, Gromaire MC, Rocher V, Cambier P, Bonté P, Colin JL, de Pontevès C, Meybeck M (2007) Critical budget of metal sources and pathways in the Seine River basin (1994–2003) for Cd, Cr, Cu, Hg, Ni, Pb and Zn. Sci Total Environ 375(1–3):180–203CrossRefGoogle Scholar
  24. 24.
    Thouvenin B, Boutier B, Chiffoleau JF, Gonzalez JL, Cossa D, Auger D, Averty B, Rozuel-Chartier E, Ménard D, Santini A, Olivier M (2005) Contribution à l’étude de la dynamique et de la spéciation des contaminants, Rapport d’activité 2004, Programme Seine Aval 3, 2005, p 46. http://seine-aval.crihan.fr/web
  25. 25.
    Van de Velde K, Barbante C, Cozzi G, Moret I, Bellomi T, Ferrari C, Boutron C (2000) A 200 year record of atmospheric cobalt, chromium, molybdenum, and antimony in high altitude alpine firn and ice. Atmos Environ 34:3117–3127CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sophie Ayrault
    • 1
    Email author
  • Cindy Rianti Priadi
    • 1
    • 2
  • Pierre Le Pape
    • 1
    • 3
  • Philippe Bonté
    • 1
  1. 1.Laboratoire des Sciences du Climat et de l’Environnement, UMR 8212CEA-CNRS-UVSQ/IPSLGif-sur-YvetteFrance
  2. 2.Environmental Engineering Study Program, Civil Engineering Department, Faculty of EngineeringUniversitas IndonesiaKampus UI DepokIndonesia
  3. 3.Laboratoire Interactions des Environnements de Surface, UMR 8148Univ. Paris Sud-CNRSOrsay cedexFrance

Personalised recommendations