Advertisement

Membranes for Direct Alcohol Fuel Cells

  • Horacio R. CortiEmail author
Chapter

Abstract

This chapter is devoted to summarize and discuss the main properties of ionomeric membranes used in direct alcohol PEM fuel cells. Although Nafion is the proton exchange membrane commonly used in methanol and other direct alcohol fuel cells, other proton and alkaline membranes are being investigated in order to improve the efficiency of DAFC. The goals in the development of this critical component of DAFC are: low cost, long durability, low alcohol permeability and high electrical conductivity. The last two properties can be combined in a single parameter, the membrane selectivity that accounts for the ratio between the proton and alcohol transport through the membrane. This parameter can be compared to that measured for Nafion to define a relative selectivity, which is a primary parameter to evaluate the potentiality of a ionomer material to be used in alcohol feed fuel cells.

The vast catalogue of polymeric materials reviewed here included Nafion composite with inorganic and organic fillers, and non-fluorinated proton conducting membranes such as sulfonated polyimides, poly(arylene ether)s, polysulfones, poly(vinyl alcohol), polystyrenes, and acid-doped polybenzimidazoles. Anion-exchange membranes are also discussed because of the facile electro-oxidation of alcohols in alkaline media and because of the minimization of alcohol crossover in alkaline direct alcohol fuel cells.

The performance of different types of membranes in direct alcohol fuel cells, mainly methanol, are summarized and discussed in order to identify the most promissory ones. The lack of correlation between the relative selectivity and fuel cell performance of the membranes indicates that the architecture of the three phases region is a decisive factor to take into account in the design of enhanced performance membrane-electrode assemblies.

References

  1. 1.
    Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39Google Scholar
  2. 2.
    DeLuca NW, Elabd YA (2006) Polymer electrolyte membranes for the direct methanol fuel cell: a review. J Polym Sci Pol Phys 44:2201–2225Google Scholar
  3. 3.
    Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169:221–238Google Scholar
  4. 4.
    Kim YS, Pivovar BS (2007) Polymer electrolyte membranes for direct methanol fuel cells. In: Zhao TS, Kreuer KD, Van Nguyen T (eds) Advances in fuel cells. Elsevier, Oxford (UK) Chap. 4, pp 187–234Google Scholar
  5. 5.
    Miyatake K, Watanabe M (2008) Polyimide ionomer membranes for PEFCs and DMFCs. In: Peinemann KV, Pereira Nunes S (eds) Membranes for energy conversion. Wiley VCH, Weinheim, pp 47–59, Chap. 2Google Scholar
  6. 6.
    Aricó AS, Baglio V, Antonucci V (2008) Composite membranes for high temperature direct methanol fuel cells. In: Peinemann KV, Pereira Nunes S (eds) Membranes for energy conversion. Wiley VCH, Weinheim, pp 123–167, Chap. 5Google Scholar
  7. 7.
    Kim DS, Guiver MD, Kim YS (2009) Proton exchange membranes for direct methanol fuel cells. In: Liu A, Zhang J (eds) Electrocatalysis of direct methanol fuel cells. Wiley-VCH, Weinheim, pp 379–416, Chap. 10Google Scholar
  8. 8.
    Lin J, Wycisk R, Pintauro PN (2009) Modified Nafion as the membrane material for direct methanol fuel cells. In: Zaidi SMJ, Matsuura T (eds) Polymer membranes for fuel cells. Springer, New York, pp 341–359, Chap. 14Google Scholar
  9. 9.
    Ahmad H, Kamarudin SK, Hasran UA, Daud WRW (2010) Overview of hybrid membranes for direct-methanol fuel-cell applications. Int J Hydrogen Energ 35:2160–2175Google Scholar
  10. 10.
    Laberty-Robert C, Vallé K, Pereira F, Sanchez C (2011) Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chem Soc Rev 40:961–1005Google Scholar
  11. 11.
    Thiam HS, Daud WRW, Kamarudin SK, Mohammad AB, Kadhum AAH, Loh KS, Majlan EH (2011) Overview on nanostructured membrane in fuel cell applications. Int J Hydrogen Energ 36:3187–3205Google Scholar
  12. 12.
    Pivovar BS, Wang Y, Cussler EL (1999) Pervaporation membranes in direct methanol fuel cells. J Membr Sci 154:155–162Google Scholar
  13. 13.
    Wee JH (2007) A feasibility study on direct methanol fuel cells for laptop computers based on a cost comparison with lithium-ion batteries. J Power Sources 173:424–436Google Scholar
  14. 14.
    Piela P, Eickes C, Brosha E, Garzon F, Zelenay P (2004) Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. J Electrochem Soc 151:A2053–A2059Google Scholar
  15. 15.
    Choi JH, Kim YS, Bashyam R, Zelenay P (2006) Ruthenium crossover in DMFCs operating with different proton conducting membranes. ECS Trans 1:437–445Google Scholar
  16. 16.
    Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4585Google Scholar
  17. 17.
    Viswanathan B, Helen M (2007) Is Nafion the only choice? Bull Catal Soc India 6:50–66Google Scholar
  18. 18.
    Gierke TD, Munn GE, Wilson FC (1981) The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle X-ray studies. J Polym Sci Pol Phys 19:1687–1704Google Scholar
  19. 19.
    Rubatat L, Gebel G, Diat O (2004) Fibrillar structure of Nafion: matching Fourier and real space studies of corresponding films and solutions. Macromolecules 37:7772–7783Google Scholar
  20. 20.
    Schmidt-Rohr K, Chen Q (2008) Parallel cylindrical water nanochannels in Nafion fuel cell membranes. Nat Mater 7:75–83Google Scholar
  21. 21.
    Mu S, Tang H, Wan Z, Pan M, Yuan R (2005) Au nanoparticles self-assembled onto Nafion membranes for use as methanol-blocking barriers. Electrochem Commun 7:1143–1147Google Scholar
  22. 22.
    Yoon SR, Hwuang GH, Cho WI, Oh IH, Hong SA, Ha HY (2002) Modification of polymer electrolyte membranes for DMFCs using Pd films formed by sputtering. J Power Sources 106:215–223Google Scholar
  23. 23.
    Ma ZQ, Cheng P, Zhao TS (2003) A palladium-alloy deposited Nafion membrane for direct methanol fuel cells. J Membr Sci 215:327–336Google Scholar
  24. 24.
    Kim YM, Park KW, Choi JH, Park IS, Sung YE (2003) A Pd-impreganted nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC. Electrochem Commun 5:571–574Google Scholar
  25. 25.
    Tang H, Pan M, Jiang S, Wan Z, Yuan R (2005) Self-assembling multi-layer Pd nanoparticles onto Nafion membrane to reduce methanol crossover. Colloid Surface A 262:65–70Google Scholar
  26. 26.
    Brandão L, Rodrigues J, Madeira LM, Mendes A (2010) Methanol crossover reduction by Nafion modification with palladium composite nanoparticles: application to direct methanol fuel cells. Int J Hydrogen Energ 35:11561–11567Google Scholar
  27. 27.
    Liang ZX, Shi JY, Liao SJ, Zeng JH (2010) Noble metal nanowires incorporated Nafion membranes for reduction of methanol crossover in direct methanol fuel cells. Int J Hydrogen Energ 35:9182–9185Google Scholar
  28. 28.
    Jiang SP, Liu Z, Tang HL, Pan M (2006) Synthesis and characterization of PDDA-stabilized Pt nanoparticles for direct methanol fuel cells. Electrochim Acta 51:5721–5730Google Scholar
  29. 29.
    Jung EH, Jung UH, Yang TH, Peak DH, Jung DH, Kim SH (2007) Methanol crossover through PtRu/Nafion composite membrane for a direct methanol fuel cell. Int J Hydrogen Energ 32:903–907Google Scholar
  30. 30.
    Antonucci PL, Aricó AS, Creti P, Ramunni E, Antonucci V (1999) Investigation of a direct methanol fuel cell based on a composite Nafion-silica electrolyte for high temperature operation. Solid State Ion 125:431–437Google Scholar
  31. 31.
    Staiti P, Aricó AS, Baglio V, Lufrano F, Passalacqua E, Antonucci V (2001) Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells. Solid State Ion 145:101–107Google Scholar
  32. 32.
    Jung DH, Cho SY, Peck DH, Shin DR, Kim JS (2002) Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell. J Power Sources 106:173–177Google Scholar
  33. 33.
    Dimitrova P, Friedrich KA, Stimming U, Vogt B (2002) Modified Nafion- based membranes for use in direct methanol fuel cells. Solid State Ion 150:115–122Google Scholar
  34. 34.
    Dimitrova P, Friedrich KA, Vogt B, Stimming U (2002) Transport properties of ionomer composite membranes for direct methanol fuel cells. J Electroanal Chem 532:75–83Google Scholar
  35. 35.
    Yen CY, Lee CH, Lin YF, Lin HL, Hsiao YH, Liao SH, Chuang CY, Ma CCM (2007) Sol–gel derived sulfonated-silica/Nafion composite membrane for direct methanol fuel cell. J Power Sources 173:36–44Google Scholar
  36. 36.
    Lin Y, Yen C, Ma CM, Liao S, Lee C, Hsiao Y, Lin H (2007) High proton-conducting Nafion/-SO3H functionalized mesoporous silica composite membranes. J Power Sources 171:388–395Google Scholar
  37. 37.
    Jin Y, Qiao S, Zhang ZP, Xu ZP, Smart S, Diniz da Costa JC, Lu GQ (2008) Novel Nafion composite membranes with mesoporous silica nanospheres as inorganic fillers. J Power Sources 185:664–669Google Scholar
  38. 38.
    Lin Y, Li H, Liu C, Xing W, Ji X (2008) Surface-modified Nafion membranes with mesoporous SiO2 layers via a facile dip-coating approach for direct methanol fuel cells. J Power Sources 185:904–908Google Scholar
  39. 39.
    Park CH, Kim HK, Lee CH, Park HB, Lee YM (2009) Nafion nanocomposite membranes: effect of fluorosurfactants on hydrophobic silica nanoparticle dispersion and direct methanol fuel cell performance. J Power Sources 194:646–654Google Scholar
  40. 40.
    Jiang R, Kunz HR, Fenton JM (2006) Composite silica/Nafion membranes prepared by tetraethylorthosilicate sol–gel reaction and solution casting for direct methanol fuel cells. J Membr Sci 272:116–124Google Scholar
  41. 41.
    Sahu AK, Bhat SD, Pitchumani S, Sridhar P, Vimalan V, George C, Chandrakumar N, Shukla AK (2009) Novel organic–inorganic composite polymer electrolyte for DMFCs. J Membr Sci 345:305–314Google Scholar
  42. 42.
    Lei M, Wang SL, Li LH, Tang WH (2011) A Nafion-silica cathode electrolyte for durable elevated-temperature direct methanol fuel cells. J Power Sources 196:1123–1126Google Scholar
  43. 43.
    Alvarez A, Guzman C, Peza-Ledesma J, Godinez LA, Nava R, Duron-Torres SM, Ledesma Garcia J, Arriage LG (2011) Silica-based composite membranes for methanol fuel cells operating at high temperature. J New Mater Electrochem Syst 14:87–91Google Scholar
  44. 44.
    Sahu AK, Meenakshi S, Bhat SD, Shahid A, Sridhar P, Pitchumani S, Shukla AK (2012) Meso-structured silica-Nafion hybrid membranes for direct methanol fuel cells. J Electrochem Soc 159:F702–F710Google Scholar
  45. 45.
    Kim D, Scibioh MA, Kwak S, Oh IH, Ha HY (2004) Nano-silica layer composite membrane prepared by PECVD for direct methanol fuel cells. Electrochem Commun 6:1069–1074Google Scholar
  46. 46.
    Kim YJ, Choi WC, Woo SI, Hong WH (2004) Proton conductivity and methanol permeation in Nafion/ORMOSIL prepared with various organic silanes. J Membr Sci 238:213–222Google Scholar
  47. 47.
    Li C, Sun G, Ren S, Liu J, Wang Q, Wu Z, Sun H, Jin W (2006) Casting Nafion-sulfonated organosilica nanocomposite membranes used in direct methanol fuel cells. J Membr Sci 272:50–57Google Scholar
  48. 48.
    Ren S, Sun G, Li C, Liang Z, Wu Z, Jin W, Qin X, Yang X (2006) Organic silica/Nafion composite membrane for direct methanol fuel cells. J Membr Sci 282:450–455Google Scholar
  49. 49.
    Liang ZX, Zhao TS, Prabhuram J (2006) Diphenylsilicate-incorporated Nafion membranes for reduction of methanol crossover in direct methanol fuel cells. J Membr Sci 283:219–224Google Scholar
  50. 50.
    Tay SW, Zhang X, Liu Z, Hong L, Chan SH (2008) Composite Nafion membrane embedded with hybrid nanofillers for promoting direct methanol fuel cell performance. J Membr Sci 321:139–145Google Scholar
  51. 51.
    Tricoli V, Nannetti F (2003) Zeolite-Nafion composites as ion conducting membrane materials. Electrochim Acta 48:2625–2633Google Scholar
  52. 52.
    BaglioV AAS, Di Blasi A, Antonucci PL, Nannetti F, Tricoli V, Antonucci V (2005) Zeolite-based composite membranes for high temperature direct methanol fuel cells. J Appl Electrochem 35:207–212Google Scholar
  53. 53.
    Baglio V, Di Blasi A, Aricó AS, Antonucci V, Antonucci PL, Nannetti F, Tricoli V (2005) Investigation of the electrochemical behaviour in DMFCs of chabazite and clinoptilolite-based composite membranes. Electrochim Acta 50:5181–5188Google Scholar
  54. 54.
    Chen Z, Holmberg B, Li W, Wang X, Deng W, Munoz R, Yan Y (2006) Nafion/Zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem Mater 18:5669–5675Google Scholar
  55. 55.
    Byun SC, Jeong YJ, Park JW, Kim SD, Ha HY, Kim WJ (2006) Effect of solvent and crystal size on the selectivity of ZSM-5/Nafion composite membranes fabricated by solution-casting method. Solid State Ion 177:3233–3243Google Scholar
  56. 56.
    Gribov EN, Parkhomchuk EV, Krivobokov IM, Darr JA, Okunev AG (2007) Supercritical CO2 assited synthesis of highly selective nafion-zeolite nanocomposite membranes for direct methanol fuel cells. J Membr Sci 297:1–4Google Scholar
  57. 57.
    Yildirim MH, Curoś AR, Motuzas J, Julbe A, Stamatialis DF, Wessling M (2009) Nafion/H-ZSM-5 composite membranes with superior performance for direct methanol fuel cells. J Membr Sci 338:75–83Google Scholar
  58. 58.
    Yoonoo C, Dawson CP, Roberts EPL, Holmes SM (2011) Nafion/mordenite composite membranes for improved direct methanol fuel cell performance. J Membr Sci 369:367–374Google Scholar
  59. 59.
    Zhang Z, Désilets F, Felice V, Mecheri B, Licoccia S, Tavares AC (2011) On the proton conductivity of Nafion-Faujasite composite membranes for low temperature direct methanol fuel cells. J Power Sources 196:9176–9187Google Scholar
  60. 60.
    Li X, Roberts EPL, Holmes SM, Zholobenko V (2007) Functionalized zeolite A-Nafion composite membranes for direct methanol fuel cells. Solid State Ion 178:1248–1255Google Scholar
  61. 61.
    Jung DH, Cho SY, Peck DH, Shin DR, Kim JS (2003) Preparation and performance of a Nafion/montmorillonite nanocomposite membrane for direct methanol fuel cell. J Power Sources 118:205–211Google Scholar
  62. 62.
    Song MK, Park SB, Kim YT, Rhee HW, Kim J (2003) Nanocomposite polymer membrane based on cation exchange polymer and nano-dispersed clay sheets. Mol Cryst Liq Crys 407:15–23Google Scholar
  63. 63.
    Thomassin JM, Pagnoulle C, Bizzari D, Caldarella G, Germain A, Jérome R (2004) Nafion-layered silicate nanocomposite membrane for fuel cell application. e-Polymers 4:182–194Google Scholar
  64. 64.
    Thomassin JM, Pagnoulle C, Caldarella G, Germain A, Jérome R (2005) Impact of acid containing montmorillonite on the properties of Nafion membranes. Polymer 46:11389–11395Google Scholar
  65. 65.
    Thomassin JM, Pagnoulle C, Bizzari D, Caldarella G, Germain A, Jérome R (2004) Improvement of the barrier properties of Nafion by fluoro-modified montmorillonite. Solid State Ion 177:1137–1144Google Scholar
  66. 66.
    Rhee CH, Kim HK, Chang H, Lee JS (2005) Nafion/sulfonated montmorillonite composite: a new concept electrolyte membrane for direct methanol fuel cells. Chem Mater 17:1691–1697Google Scholar
  67. 67.
    Lin YF, Yen CY, Hung CH, Hsiao YH, Ma CCM (2007) A novel composite membranes based on sulfonated montmorillonite modified Nafion for DMFCs. J Power Sources 168:162–166Google Scholar
  68. 68.
    Kim TK, Kang M, Choi YS, Kim HK, Lee W, Chang H, Seung D (2007) Preparation of Nafion-sulfonsted clay nanocomposite membrane for direc t methanol fuel cells via a film coating process. J Power Sources 165:1–8Google Scholar
  69. 69.
    Lee W, Kim H, Kim TK, Chang H (2007) Nafion based organic/inorganic composite membrane for air-breathing direct methanol fuel cells. J Membr Sci 292:29–34Google Scholar
  70. 70.
    Lin YF, Yen CY, Ma CCM, Liao SH, Hung CH, Hsiao YH (2007) Preparation and properties of high performance nanocomposite proton exchange membrane for fuel cell. J Power Sources 165:692–700Google Scholar
  71. 71.
    Hasani-Sadrabadi MM, Dashtimoghadam E, Majedi FS, Kabiri K (2009) Nafion/bio-functionalized montmorillonite nanohybrids as novel polyelectrolytes membranes for direct methanol fuel cells. J Power Sources 190:318–321Google Scholar
  72. 72.
    Hudiono Y, Choi S, Shu S, Koros WJ, Tsapatsis M, Nair S (2009) Porous layered oxide/Nafion nanocomposite membranes for direct methanol fuel cell applications. Micropor Mesopor Mat 118:427–434Google Scholar
  73. 73.
    Meenakshi S, Sahu AK, Bhat SD, Sridhar P, Pitchumani S, Shukla AK (2013) Mesostructured-aluminosilicate-Nafion hybrid membranes for direct methanol fuel cells. Electrochim Acta 89:35–44Google Scholar
  74. 74.
    Park YS, Yamazaki Y (2005) Low methanol permeable and high proton-conducting Nafion/calcium phosphate composite membrane for DMFC. Solid State Ion 176:1079–1089Google Scholar
  75. 75.
    Yang C, Srinivasan S, Aricó AS, Creti P, Baglio V, Antonucci V (2001) Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature. Electrochem Solid St 4:A31–A34Google Scholar
  76. 76.
    Bauer F, Willert-Porada M (2004) Microstructural characterization of Zr-phosphate-Nafion membranes for direct methanol fuel cell (DMFC) applications. J Membr Sci 233:141–149Google Scholar
  77. 77.
    Bauer F, Willert-Porada M (2005) Characterization of zirconium and titanium phosphates and direct methanol fuel cell (DMFC) performance of functionally graded Nafion composite membranes prepared out of them. J Power Sources 145:101–107Google Scholar
  78. 78.
    Hou YH, Sun GQ, Wu ZM, Jin W, Xin Q (2008) Zirconium phosphate/Nafion 115 composite membrane for high concentration DMFC. Int J Hydrogen Energ 33:3402–3409Google Scholar
  79. 79.
    Casciola M, Bagnasco G, Donnadio A, Micoli L, Pica M, Sganappa M, Turco M (2009) Conductivity and methanol permeability of Nafion–zirconium phosphate composite membranes containing high aspect ratio filler particles. Fuel Cells 9:394–400Google Scholar
  80. 80.
    Arbizzani C, Donadio A, Pica M, Sganappa M, Varzi A, Casciola M, Mastragostino M (2010) Methanol permeability and performance of Nafion-zirconum phosphate composite membranes in active and passive direct methanol fuel cells. J Power Sources 195:7751–7756Google Scholar
  81. 81.
    Kim YS, Cho HS, Song MK, Ghil LJ, Kang JS, Rhee HW (2008) Characterization of Nafion/zirconium sulphophenyl phosphate nanocomposite membrane for direct methanol fuel cells. J Nanosci Nanotechnol 8:4640–4643Google Scholar
  82. 82.
    Yang HN, Lee JY, Jeong JY, Na Y, Kim WJ (2011) Cell performance of DMFC fabricated with H + −ETS-10/Nafion composite membrane. Micropor Mesopor Mat 143:215–220Google Scholar
  83. 83.
    Jeon JD, Kim J, Kwak SY (2012) Nafion/microporous titanosilicate ETS-4 composite membranes for effective methanol crossover reduction in direct methanol fuel cells. J Membr Sci 415–416:353–359Google Scholar
  84. 84.
    Rhee CH, Kim Y, Lee JS, Kim HK, Chang H (2006) Nanocomposite membranes of surface-sulfonated titanate and Nafion for direct methanol fuel cells. J Power Sources 159:1015–1024Google Scholar
  85. 85.
    Liu Z, Guo B, Huang J, Hong L, Han M, Gan LM (2006) Nano-TiO2-coated polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 157:207–211Google Scholar
  86. 86.
    Wu Z, Sun G, Jin W, Hou H, Wang S, Xin Q (2008) Nafion and nano-size TiO2-SO4 2− solid superacid composite membrane for direct methanol fuel cell. J membrane Sci 313:336–343Google Scholar
  87. 87.
    Ren S, Sun G, Li C, Song S, Xin Q, Yang X (2006) Sulfated zirconia-Nafion composite membranes for higher temperature direct methanol fuel cells. J Power Sources 157:724–726Google Scholar
  88. 88.
    Sun L, Wang S, Jin W, Hou H, Jiang L, Sun G (2010) Nano-sized Fe2O3-SO4 2− solid superacid composite Nafion membranes for direct methanol fuel cells. Int J Hydrogen Energ 35:12461–12468Google Scholar
  89. 89.
    Hasanabadi N, Ghaffarian SR, Hasani-Sadrabadi MM (2013) Nafion-based magnetically aligned nanocomposite proton exchange membranes for direct methanol fuel cells. Solid State Ion 232:58–67Google Scholar
  90. 90.
    Barbora L, Singh R, Shroti N, Verma A (2010) Synthesis and characterization of neodymium oxide modified Nafion membrane for direct alcohol fuel cells. Mater Chem Phys 122:211–216Google Scholar
  91. 91.
    Shroti N, Barbora L, Verma A (2011) Neodymium triflate modified Nafion composite membrane for reduced alcohol permeability in direct alcohol fuel cell. Int J Hydrogen Energ 36:14907–14913Google Scholar
  92. 92.
    Barbora L, Acharya S, Singh R, Scott K, Verma A (2009) A novel composite Nafion membrane for direct alcohol fuel cells. J Membr Sci 326:721–726Google Scholar
  93. 93.
    Kang S, Peck DH, Park YC, Jung DH, Jang JH, Lee HR (2008) Hydroscopic strontium hydroxide/Nafion composite membrane for a direct methanol fuel cell. J Phys Chem Solids 69:1280–1283Google Scholar
  94. 94.
    Xiang Y, Yang M, Zhang J, Lan F, Lu S (2011) Phosphotungstic acid (HPW) molecules anchored in the bulk of Nafion as methanol-blocking membrane for direct methanol fuel cells. J Membr Sci 368:241–245Google Scholar
  95. 95.
    Xu W, Lu T, Liu C, Xing W (2005) Low methanol composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells. Electrochim Acta 50:3280–3285Google Scholar
  96. 96.
    Kim YC, Jeong JY, Hwang JY, Kim SD, Yi SC, Kim WJ (2008) Incorporation of heteropoly acid, tungstophosphoric acid within MCM-41 via impregnation and direct synthesis methods for the fabrication of composite membrane of DMFC. J Membr Sci 325:252–261Google Scholar
  97. 97.
    Thiam HS, Daud WRW, Kamarudin SK, Mohamad AB, Kadhum AAH, Loh KS, Majlan EH (2013) Nafion/Pd-SiO2 nanofiber composite membrane for direct methanol fuel cell applications. Int J Hydrogen Energ 38:9474–9483Google Scholar
  98. 98.
    Easton EB, Langsdorf BL, Hughes JA, Sultan J, Qi Z, Kaufman A, Pickup PG (2003) Characteristics of polypyrrole/Nafion composite membranes in a direct methanol fuel cell. J Electrochem Soc 150:C735–C739Google Scholar
  99. 99.
    Langsdorf BL, Sultan J, Pickup PG (2003) Partitioning and polymerization of pyrrole into perfluorosulfonate (Nafion) membranes under neutral conditions. J Phys Chem B 107:8412–8415Google Scholar
  100. 100.
    Xu F, Innocenti C, Bonnet B, Jones DJ, Rozière J (2005) Chemical modification of perfluorosulfonated membranes with pyrrole for fuel cell application: preparation, characterization and methanol transport. Fuel Cells 5:398–405Google Scholar
  101. 101.
    Zhu J, Sattler RR, Garsuch YO, Pickup PG (2006) Optimisation of polypyrrole/Nafion composite membranes for direct methanol fuel cells. Electrochim Acta 51:4052–4060Google Scholar
  102. 102.
    Park HS, Kim YJ, Hong WH, Lee HK (2006) Physical and electrochemical properties of Nafion/polypyrrole composite membrane for DMFC. J Membr Sci 272:28–36Google Scholar
  103. 103.
    Li L, Zhang Y, Drillet JF, Dittmeyer R, Jüttner KM (2007) Preparation and characterization of Pt direct deposition on polypyrrole modified Nafion composite membrane for direct methanol fuel cell applications. Chem Eng J 133:113–119Google Scholar
  104. 104.
    Park HS, Kim YJ, Choi YS, Hong WH, Jung D (2008) Surface chemistry and physical properties of Nafion/polypyrrole/Pt composite membrane prepared by chemical in situ polymerization for DMFC. J Power Sources 178:610–619Google Scholar
  105. 105.
    Hobson LJ, Nakano Y, Ozu H, Hayase S (2002) Targeting improved DMFC performance. J Power Sources 104:79–84Google Scholar
  106. 106.
    Wycisk R, Chisholm J, Lee J, Lin J, Pintauro PN (2006) Direct methanol fuel cell membranes from Nafion-polybenzimidazole blends. J Power Sources 163:9–17Google Scholar
  107. 107.
    Ainla A, Brandell D (2007) Nafion-polybenzimidazole (PBI) composite membranes for DMFC applications. Solid State Ion 178:581–585Google Scholar
  108. 108.
    Sauk J, Byun J, Kim H (2005) Composite Nafion/polyphenylene oxide (PPO) membranes with phosphomolybdic acid (PMA) for direct methanol fuel cells. J Power Souces 143:136–141Google Scholar
  109. 109.
    Ma CCM, Hsiao YH, Lin YF, Yen CY, Liao SH, Weng CC, Yen MY, Hsiao MC, Weng FB (2008) Effect and properties of various molecular weights of poly(propylene oxide) oligomers/Nafion acid–base blend membranes for direct methanol fuel cells. J Power Sources 185:846–852Google Scholar
  110. 110.
    Liu J, Wang H, Cheng S, Chan KY (2005) Nafion-polyfurfuryl alcohol nanocomposite membranes for direct methanol fuel cells. J Membr Sci 246:95–101Google Scholar
  111. 111.
    Shao ZG, Wang X, Hsing IM (2002) Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell. J Membr Sci 210:147–153Google Scholar
  112. 112.
    DeLuca NW, Elabd YA (2006) Direct methanol fuel cell performance of Nafion/poly(vinyl alcohol) blend membranes. J Power Sources 163:386–391Google Scholar
  113. 113.
    Lin HL, Wang SH, Chiu CK, Yu TL, Chen LC, Huang CC, Cheng TH, Lin JM (2010) Preparation of Nafion/poly(vinyl alcohol) electro-spun fiber composite membranes for direct methanol fuel cells. J Membr Sci 365:114–122Google Scholar
  114. 114.
    Mollá S, Compañ V (2011) Performance of composite Nafion/PVA membranes for direct methanol fuel cells. J Power Sources 196:2699–2708Google Scholar
  115. 115.
    Mollá S, Compañ V (2011) Polyvinyl alcohol nanofiber reinforced Nafion membrane for fuel cell applications. J Membr Sci 372:191–200Google Scholar
  116. 116.
    Wu Z, Sun G, Jin W, Wang Q, Hou H, Chan KY, Xin Q (2007) Use of in situ polymerized phenol-formaldehyde resin to modify a Nafion membrane for the direct methanol fuel cell. J Power Sources 167:309–314Google Scholar
  117. 117.
    Kim HJ, Kim HJ, Shul YG, Han HS (2004) Nafion-Nafion/polyvinylidene fluoride-Nafion laminated polymer membrane for direct methanol fuel cells. J Power Sources 135:66–71Google Scholar
  118. 118.
    Cho KY, Eom JY, Jung HY, Choi NS, Lee YM, Park JK, Choi JH, Park KW, Sung YE (2004) Characteristics of PVdF copolymer/Nafion blend membrane for direct methanol fuel cells (DMFC). Electrochim Acta 50:583–588Google Scholar
  119. 119.
    Cho KY, Jung HY, Choi NS, Sung SJ, Park JK, Choi JH, Sung YE (2005) A coated Nafion membrane with PVdF copolymer/Nafion blend for direct methanol fuel cells (DMFCs). Solid State Ion 176:3027–3030Google Scholar
  120. 120.
    Cho KY, Jung HY, Sung SJ, Kim WK, Sung SJ, Park JK, Choi JH, Sung YE (2006) Preparation and characteristics of Nafion membrane coated with a PVdF copolymer/recast Nafion blend for direct methanol fuel cell. J Power Sources 159:524–528Google Scholar
  121. 121.
    Choi SW, Fu YZ, Ahn YR, Jo SM, Manthiran A (2008) Nafion-impregnated electrospun polyvinylidene fluoride composite membranes for direct methanol fuel cells. J Power Sources 180:167–171Google Scholar
  122. 122.
    Alwin S, Bhat SD, Sahu AK, Jalajakshi A, Sridhar P, Pitchumani S, Shukla AK (2011) Modified-pore-filled-PVDF-membrane electrolytes for direct methanol fuel cells. J Electrochem Soc 158:B91–B98Google Scholar
  123. 123.
    Kim HY, Kang MS, Lee DH, Won JG (2007) Proton exchange membrane with high cell performance based on Nafion/poly(p-phenylene vinylene) composite polymer electrolyte. J Membr Sci 304:60–64Google Scholar
  124. 124.
    Li T, Zhong G, Fu R, Yang Y (2010) Synthesis and characterization of Nafion/cross-linked PVP semi-interpenetrating polymer network membrane for direct methanol fuel cell. J Membr Sci 354:189–197Google Scholar
  125. 125.
    Chen CY, Garnica-Rodriguez JI, Duke MC, Dalla Costa RF, Dicks AL, Diniz da Costa JC (2007) Nafion/polyaniline/silica composite membranes for direct methanol fuel cell application. J Power Sources 166:324–330Google Scholar
  126. 126.
    Huang QM, Zhang QL, Huang HL, Li WS, Huang YJ, Luo JL (2008) Methanol permeability and proton conductivity of Nafion membranes modified electrochemically with polyaniline. J Power Sources 184:338–343Google Scholar
  127. 127.
    Choi BG, Park HS, Im HS, Kim YJ, Hong WH (2008) Influence of oxidation state on physicochemical and transport properties of nafion/polyaniline composite membrane for DMFC. J Membr Sci 324:102–110Google Scholar
  128. 128.
    Wang CH, Chen CHC, Du HY, Chen CP, Hwang JY, Chen LC, Shih HC, Stejskal J, Chen KH (2009) Low methanol-permeable polyaniline/Nafion composite membrane for direct methanol fuel cells. J Power Sources 190:279–284Google Scholar
  129. 129.
    Yildirim MH, Stamatialis D, Wessling M (2008) Dimensionally stable Nafion-polyethylene composite membranes for direct methanol fuel cell applications. J Membr Sci 321:364–372Google Scholar
  130. 130.
    Shim JH, Koo IG, Lee WM (2005) Nafion-impregnated polyethylene-terephtalate film used as the electrolyte for direct methanol fuel cells. Electrochim Acta 50:2385–2391Google Scholar
  131. 131.
    Jeon JD, Kwak SY (2008) Nafion/sulfated β-cyclodextrin composite membrane. J Power Sources 185:49–54Google Scholar
  132. 132.
    Ren S, Li C, Zhao X, Wu Z, Wang S, Sun G, Xin Q, Yang X (2005) Surface modification of sulfonated poly(ether ether ketone) membranes using Nafion solution for direct methanol fuel cells. J Membr Sci 247:59–63Google Scholar
  133. 133.
    Tsai JC, Cheng HP, Kuo JF, Huang YH, Chen CY (2009) Blended Nafion/SPEEK direct methanol fuel cell membranes for reduced methanol permeability. J Power Sources 189:958–965Google Scholar
  134. 134.
    Tsai JC, Kuo JF, Chen CY (2009) Nafion/nitrated sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells. J Power Sources 194:226–233Google Scholar
  135. 135.
    Zhang N, Zhang G, Xu D, Zhao C, Ma W, Li H, Zhang Y, Xu S, Jiang H, Sun H, Na H (2011) Cross-linked membranes based on sulfonated poly (ether ether ketone) (SPEEK)/Nafion for direct methanol fuel cells (DMFCs). Int J Hydrogen Energ 36:11025–11033Google Scholar
  136. 136.
    Kim IT, Choi J, Kim SC (2007) Blend membranes of Nafion/sulfonated poly(aryl ether ketone) for direct methanol fuel cell. J Membr Sci 300:28–35Google Scholar
  137. 137.
    Choi J, Kim IT, Kim SC (2005) Nafion-sulfonated poly(arylene ether sulfone) composite membrane for direct methanol fuel cell. Macromol Res 13:514–520Google Scholar
  138. 138.
    Bae B, Ha HY, Kim D (2005) Preparation and characterization of Nafion/poly(1-vinylimidazole) composite membrane for direct methanol fuel cell application. J Electrochem Soc 152:A1366–A1372Google Scholar
  139. 139.
    Woong JC, Venkataramani SD, Kim SC (2006) Modification of Nafion membrane using poly(4-vinyl pyridine) for direct methanol fuel cell. Polym Int 55:491–499Google Scholar
  140. 140.
    Lin HL, Yu TL, Huang LN, Chen LC, Shen KS, Jung GB (2005) Nafion/PTFE composite membranes for direct methanol fuel cell applications. J Power Sources 150:11–19Google Scholar
  141. 141.
    Chen LC, Yu TL, Lin HL, Yeh SH (2008) Nafion/PTFE and zirconium phosphate modified Nafion/PTFE composite membranes for direct methanol fuel cells. J Membr Sci 307:10–20Google Scholar
  142. 142.
    Chiu KF, Chen YR, Lin HC, Ho WH (2010) PTFE coated Nafion proton conducting membranes for direct methanol fuel cells. Surf Coat Technol 205:1647–1650Google Scholar
  143. 143.
    Lin J, Lee JK, Kellner M, Wycisk R, Pintauro PN (2006) Nafion-fluorinated ethylene-propylene resin membrane blends for direct methanol fuel cells. J Electrochem Soc 153:A1325–A1331Google Scholar
  144. 144.
    Kim SH, Song K (2011) Preparation and characterization of Nafion/sPOSS polyelectrolyte nanocomposite membranes for direct methanol fuel cell applications. J Ind Eng Chem 17:170–173Google Scholar
  145. 145.
    Li L, Drillet JF, Mácová Z, Dittmeyer R, Jüttner K (2006) Poly(3,4-ethylenedioxy thiophene)-modified Nafion membrane for direct methanol fuel cells. Russ J Electrochem 42:1193–1201Google Scholar
  146. 146.
    Li L, Zhang Y (2008) Chemical modification of Nafion membrane with 3,4-ethylene dioxythiophene for direct methanol fuel cell application. J Power Sources 175:256–260Google Scholar
  147. 147.
    Cho HD, Won J, Ha HY, Kang YS (2006) Nafion composite membranes containing rod-shape polyrotaxanes for direct methanol fuel cells. Macromol Res 14:214–219Google Scholar
  148. 148.
    Zhang J, Lan F, Liang D, Xiao Y, Lu S, Xiang Y (2011) Bulk modification of Nafion with purple membrane for direct methanol fuel cell applications. J Membr Sci 382:350–354Google Scholar
  149. 149.
    Kundu PP, Kim BT, Ahn JE, Han HS, Shul YG (2007) Formation and evaluation of semi-IPN of Nafion 117 membrane for direct methanol fuel cell. 1. Crosslinked sulfonated polystyrene in the pores of Nafion 117. J Power Sources 171:86–91Google Scholar
  150. 150.
    Bae B, Ha HY, Kim D (2006) Nafion-graft-polystyrene sulfonic acid membranes for direct methanol fuel cells. J Membr Sci 276:51–58Google Scholar
  151. 151.
    Wei X, Yates MZ (2010) Nafion/polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene composite membranes with electric field-aligned domains for improved direct methanol fuel cell performance. J Power Sources 195:736–743Google Scholar
  152. 152.
    Cho KY, Jung HY, Shin SS, Choi NS, Sung SJ, Park JK, Choi JH, Park KW, Sung YE (2004) Proton conducting semi-IPN based on Nafion and crosslinked poly(AMPS) for direct methanol fuel cell. Electrochim Acta 50:589–593Google Scholar
  153. 153.
    Zhang Y, Cui Z, Liu C, Xing W, Zhang J (2009) Implantation of Nafion ionomer into polyvinyl alcohol/chitosan composites to form novel proton-conducting membranes for direct methanol fuel cells. J Power Sources 194:730–736Google Scholar
  154. 154.
    Fang Y, Wang T, Miao R, Tang L, Wang X (2010) Modification of Nafion membranes with ternary composite materials for direct methanol fuel cells. Electrochim Acta 55:2404–2408Google Scholar
  155. 155.
    Lin CW, Fan KC, Thangamuthu R (2006) Preparation and characterization of high selectivity organic–inorganic hybrid-laminated Nafion 115 membranes for DMFC. J Membr Sci 278:437–446Google Scholar
  156. 156.
    Huang LN, Chen LC, Yu TL, Lin HL (2006) Nafion/PTFE/silicate composite membranes for direct methanol fuel cells. J Power Sources 161:1096–1105Google Scholar
  157. 157.
    Cui ZM, Li NW, Zhou XC, Liu CP, Liao JH, Zhang SB, Xing W (2007) Surface modified Nafion membrane by casting proton-conducting polyelectrolyte complexes for direct methanol fuel cells. J Power Sources 173:162–165Google Scholar
  158. 158.
    Tian AH, Kim JY, Kim K (2008) Poly(1-vinylimidazole)/Pd-impregnated Nafion for direct methanol fuel cell applications. J Power Sources 183:1–7Google Scholar
  159. 159.
    Ahmad H, Kamarudin SK, Hasran UA, Daud WRW (2011) A novel hybrid Nafion-PBI-ZP membrane for direct methanol fuel cells. Int J Hydrogen Energ 36:14668–14677Google Scholar
  160. 160.
    Sauk JH, Byun J, Kim HY (2004) Grafting of styrene on to Nafion membranes using supercritical CO2 impregnation for direct methanol fuel cells. J Power Sources 132:59–63Google Scholar
  161. 161.
    Bae B, Ha HY, Kim D (2006) Nafion-graft-polystyrene sulfonic acid membranes for direct methanol fuel cells. J Membr Sci 276:51–58Google Scholar
  162. 162.
    Mohy Eldin MS, Elzatahry AA, El-Khatib KM, Hassan EA, El-Sabbah MM, Abu-Saied MA (2011) Novel grafted Nafion membranes for proton-exchange membrane fuel cell applications. J Appl Polym Sci 119:120–133Google Scholar
  163. 163.
    Feichtinger J, Galm R, Walker M, Baumgärtner KM, Schulz A, Räuchle E, Schumacher U (2001) Plasma polymerized barrier films on membranes for direct methanol fuel cells. Surf Coat Technol 142–144:181–186Google Scholar
  164. 164.
    Si Y, Lin JC, Kunz HR, Fenton JM (2004) Trilayer membranes with a methanol-barrier layer for DMFCs. J Electrochem Soc 151:A463–A469Google Scholar
  165. 165.
    Cai Z, Li L, Su L, Zhang Y (2012) Supercritical carbon dioxide treated Nafion 212 commercial membranes for direct methanol fuel cells. Electrochem Commun 14:9–12Google Scholar
  166. 166.
    Li L, Su L, Zhang Y (2012) Enhanced performance of supercritical CO2 treated Nafion 212 membranes for direct methanol fuel cells. Int J Hydrogen Energ 37:4439–4447Google Scholar
  167. 167.
    Argun AA, Ashcraft JN, Hammond PT (2008) Highly conductive, methanol resistant polyelectrolyte multilayers. Adv Mater 20:1539–1543Google Scholar
  168. 168.
    Moon GY, Rhim JW (2008) Self-assembly modification of perfluorosulfonic acid membranes for the application to direct meytahnol fuel cells. Macromol Res 16:524–531Google Scholar
  169. 169.
    Lin H, Zhao C, Ma W, Li H, Na H (2009) Low water swelling and high methanol resistant proton exchange membrane fabricated by cross-linking of multilayered polyelectrolyte complexes. J Membr Sci 345:242–248Google Scholar
  170. 170.
    Yilmaztürk S, Deligöz H, Yilmazoğlu M, Damyan H, Öksüzömer F, Koç SN, Durmuş A, Gürkaynak A (2010) Self-assembly of highly charged polyelectrolyte complexes with superior proton conductivity and methanol barrier properties for fuel cells. J Power Sources 195:703–709Google Scholar
  171. 171.
    Zhang H, Huang H, Shen PK (2012) Methanol-blocking Nafion composite membranes fabricated by layer-by-layer self-assembly for direct methanol fuel cells. Int J Hydrogen Energ 37:6875–6879Google Scholar
  172. 172.
    Scott K, Taama WM, Argyropoulos P (2000) Performance of the direct methanol fuel cell with radiation-grafted polymer membranes. J Membr Sci 171:119–130Google Scholar
  173. 173.
    Hatanaka T, Hasegawa N, Kamiya A, Kawasumi M, Morimoto Y, Kawahara K (2002) Cell performances of direct methanol fuel cells with grafted membranes. Fuel 81:2173–2176Google Scholar
  174. 174.
    Aricó AS, Baglio V, Creti P, Di Blasi A, Antonucci V, Brunea J, Chapotot A, Bozzi A, Schoemans J (2003) Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells. J Power Sources 123:107–115Google Scholar
  175. 175.
    Shen M, Roy S, Kuhlmann JW, Scott K, Lovell K, Horsfall JA (2005) Grafted polymer electrolyte membrane for direct methanol fuel cells. J Membr Sci 251:121–130Google Scholar
  176. 176.
    Saarinen V, Kallio T, Paronen M, Tikkanen P, Rauhala E, Kontturi K (2005) New ETFE-based membrane for direct methanol fuel cell. Electrochim Acta 50:3453–3460Google Scholar
  177. 177.
    Chen J, Asano M, Yamaki T, Yoshida M (2006) Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films. J Membr Sci 269:194–204Google Scholar
  178. 178.
    Chen J, Asano M, Yamaki T, Yoshida M (2006) Chemical and radiation crosslinked polymer electrolyte membranes prepared from radiation-grafted ETFE films for DMFC applications. J Power Sources 158:69–77Google Scholar
  179. 179.
    Yoshida M, Kimura Y, Chen J, Asano M, Maekawa Y (2009) Preparation of PTFE-based fuel cell membranes by combining latent track formation technology with graft polymerization. Radiat Phys Chem 78:1060–1066Google Scholar
  180. 180.
    Maiti J, Kakati N, Lee SH, Jee SH, Viswanathan B, Yoon YS (2012) Where do poly(vinyl alcohol) based membranes stand in relation to Nafion for direct methanol fuel cell applications? J Power Sources 216:48–66Google Scholar
  181. 181.
    Liu B, Kim DS, Guiver MD, Kim YS, Pivovar BS (2008) Sulfonated poly(aryl ether)-type polymers as proton exchange membranes: synthesis and performance. In: Peinemann KV, Pereira Nunes S (eds) Membranes for energy conversion, vol 2. Wiley-VCH, Weinheim, pp 1–39Google Scholar
  182. 182.
    Regina A, Fontananova E, Drioli E, Casciola M, Sganappa M, Trotta F (2006) Preparation and characterization of sulfonated PEEK-WC membranes for fuel cell applications. A comparison between polymeric and composite membranes. J Power Sources 160:139–147Google Scholar
  183. 183.
    Luo H, Vaivars G, Mathe M (2010) Covalent-ionically cross-linked polyetheretherketone proton exchange membrane for direct methanol fuel cell. J Power Sources 19:5197–5200Google Scholar
  184. 184.
    Bose S, Kuila T, Nguyen TXH, Kim NH, Lau KT, Lee JH (2001) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36:813–843Google Scholar
  185. 185.
    Iulianelli A, Basile A (2012) Sulfonated PEEK-based polymers in PEMFC and DMFC applications: a review. Int J Hydrogen Energ 37:15241–15255Google Scholar
  186. 186.
    Miyatake K, Chikashige Y, Higuchi E, Watanabe M (2007) Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications. J Am Chem Soc 129:3879–3887Google Scholar
  187. 187.
    Rozière J, Jones DJ (2003) Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annu Rev Mater Res 33:503–555Google Scholar
  188. 188.
    Harrison WL, Hickner MA, Kim YS, McGrath JE (2005) Poly(arylene ether sulfone) copolymers and related systems from disulfonated monomer building blocks: synthesis, characterization and performance – a topical review. Fuel Cells 5:201–212Google Scholar
  189. 189.
    Vogel H, Marvel CS (1961) Polybenzimidazoles, new thermally stable polymers. J Polym Sci 50:511–539Google Scholar
  190. 190.
    Mader J, Xiao L, Schmidt TJ, Benicewicz BC (2008) Polybenimidazole/acid complexes as high-temperature membranes. Adv Polym Sci 216:63–124Google Scholar
  191. 191.
    Asensio JA, Borrós S, Gómez-Romero P (2002) Proton-conducting polymers based on benzimidazoles and sulfonated benzimidazoles. J Polym Sci Pol Chem 40:3703–3710Google Scholar
  192. 192.
    Carollo A, Quartarone E, Tomasi C, Mustarelli P, Belotti F, Magistris A, Maestroni F, Parachini M, Garlaschelli L, Righetti PP (2006) Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications. J Power Sources 160:175–180Google Scholar
  193. 193.
    Uno K, Niume K, Iwata Y, Toda F, Iwakura Y (1977) Synthesis of polybenzimidazoles with sulfonic acid groups. J Polym Sci Pol Chem 15:1309–1318Google Scholar
  194. 194.
    Asencio JA, Borrós S, Gómez-Romero P (2004) Sulfonated poly(2,5-benzimidazole) (SABPBI) impregnated with phosphoric acid as proton conducting membranes for polymer electrolyte fuel cells. Electrochim Acta 49:4461–4466Google Scholar
  195. 195.
    Jones DJ, Rozière J (2001) Recent advances in the functionalization of polybenzimidazole and polyetherketone for fuel cells application. J Membr Sci 185:41–58Google Scholar
  196. 196.
    Asensio JA, Sánchez EM, Gómez-Romero P (2010) Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chem Soc Rev 39:3210–3239Google Scholar
  197. 197.
    Pu H, Liu Q, Liu G (2004) Methanol permeation and próton conductivity of acid-doped poly(N-methylbenzimidazole) and poly(N-ethylbenzimidazole). J Membr Sci 241:169–175Google Scholar
  198. 198.
    Chuang SW, Hsu SL (2006) Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel cells applications. J Polym Sci Pol Chem 44:4508–4513Google Scholar
  199. 199.
    Li Q, Jensen JO, Savinell RF, Bjerrum NJ (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477Google Scholar
  200. 200.
    Xiao L, Zhang H, Scanlon E, Ramanathan LS, Choe EW, Rogers D, Apple T, Benicewicz BC (2005) High-temperature polybenzimidazole fuel cell membranes via a sol–gel process. Chem Mater 17:5328–5333Google Scholar
  201. 201.
    Gubler L, Kramer D, Belack J, Ünsal Ö, Schmidt TJ, Scherer GG (2007) Celtec-V. A polybenzimidazole-based membrane for the direct methanol fuel cell. J Electrochem Soc 154:B981–B987Google Scholar
  202. 202.
    Wang Y, Li L, Hu L, Zhuang L, Lu J, Xu B (2003) A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochem Commun 5:662–666Google Scholar
  203. 203.
    Danks TN, Slade RCT, Varcoe JR (2002) Alkaline anion-exchange radiation grafted membranes for possible electrochemical application in fuel cells. J Mater Chem 13:712–721Google Scholar
  204. 204.
    Varcoe JR, Slade RCT (2006) An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells. Electrochem Commun 8:839–843Google Scholar
  205. 205.
    Li L, Wang Y (2005) Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells. J Membr Sci 262:1–4Google Scholar
  206. 206.
    Xiong Y, Liu QL, Zeng QH (2009) Quaternized cardo polyetherketone anion exchange membrane for direct methanol alkaline fuel cells. J Power Sources 193:541–546Google Scholar
  207. 207.
    Fang J, Shen PK (2006) Quaternized poly(phthalazinon ether sulfone ketone) membrane for anion exchange membrane fuel cells. J Membr Sci 285:317–322Google Scholar
  208. 208.
    Abuin GA, Nonjola P, Franceschini EA, Izraelevitch FH, Mathe MK, Corti HR (2010) Characterization of an anionic-exchange membranes for direct methanol alkaline fuel cells. Int J Hydrogen Energ 35:5849–5854Google Scholar
  209. 209.
    Zhao CH, Gong Y, Liu QL, Zhang QG, Zhu AM (2012) Self-crosslinked anion exchange membranes by bromination of benzylmethyl-containing poly(sulfone)s for direct methanol fuel cells. Int J Hydrogen Energ 37:11383–11393Google Scholar
  210. 210.
    Zhou J, Ünlü M, Anestis-Richard I, Kohl PA (2010) Crosslinked, epoxy-based anion conductive membranes for alkaline membrane fuel cells. J Membr Sci 350:286–292Google Scholar
  211. 211.
    Liu G, Shang Y, Xie X, Wang S, Wang J, Wang Y, Mao Z (2012) Synthesis and characterization of anion exchange membranes for alkaline direct methanol fuel cells. Int J Hydrogen Energ 37:848–853Google Scholar
  212. 212.
    Zeng QH, Liu QL, Broadwell I, Zhu AM, Xiong Y, Tu XP (2010) Anion exchange membranes based on quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells. J Membr Sci 349:237–243Google Scholar
  213. 213.
    Xiong Y, Fang J, Zeng QH, Liu QL (2008) Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells. J Membr Sci 311:319–325Google Scholar
  214. 214.
    Hu J, Zhang C, Cong J, Toyoda H, Nagatsu M, Meng Y (2011) Plasma-grafted alkaline anion-exchange membranes based on polyvinyl chloride for potential application in direct methanol fuel cells. J Power Sources 196:4483–4490Google Scholar
  215. 215.
    Zhang C, Hu J, Cong J, Zhao Y, Shen W, Toyoda H, Nagatsu M, Meng Y (2011) Pulsed plasma-polymerized alkaline anion-exchange membranes for potential application in direct alcohol fuel cells. J Power Sources 196:5386–5393Google Scholar
  216. 216.
    Wu L, Xu T (2008) Improving anion exchange membranes for DMAFCs by inter-crosslinking CPPO/BPPO blends. J Membr Sci 322:286–292Google Scholar
  217. 217.
    Wu L, Xu T, Wu D, Zheng X (2008) Preparation and characterization of CPPO/BPPO membranes for potential application in alkaline direct methanol fuel cell. J Membr Sci 310:577–585Google Scholar
  218. 218.
    Guo TY, Zeng QH, Zhao CH, Liu QL, Zhu AM, Broadwell I (2011) Quaternized polyepichlorohydrin/PTFE composite anion exchange membranes for direct methanol alkaline fuel cells. J Membr Sci 371:268–275Google Scholar
  219. 219.
    Xu HK, Fang J, Guo M, Lu X, Wei X, Tu S (2010) Novel anion exchange membrane based on copolymer of methyl methacrylate, vinylbenzyl chloride and ethyl acrylate for alkaline fuel cells. J Membr Sci 354:206–211Google Scholar
  220. 220.
    Zhang Y, Fang J, Wu Y, Xu H, Chi X, Li W, Yang Y, Yan G (2012) Novel fluoropolymer anion exchange membrane for alkaline direct methanol fuel cells. J Colloid Interface Sci 381:59–66Google Scholar
  221. 221.
    Yan X, He G, Gu S, Wu X, Du L, Wang Y (2012) Imidazolium-functionalized polysulfone hydroxide exchange membranes for potential applications in alkaline membrane direct alcohol fuel cells. Int J Hydrogen Energ 37:5216–5224Google Scholar
  222. 222.
    Hou H, Sun G, He R, Wu Z, Sun B (2008) Alkali doped polybenzimidazole membrane for high performance alkaline direct methanol fuel cell. J Power Sources 182:95–99Google Scholar
  223. 223.
    Hou H, Sun G, He R, Wu Z, Sun B, Jin W, Liu H, Xin Q (2008) Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell. Int J Hydrogen Energ 33:7172–7176Google Scholar
  224. 224.
    Hou H, Wang S, Jiang Q, Jin W, Jiang L, Sun G (2011) Durability study of KOH doped polybenzimidazole membrane for air-breathing alkaline direct ethanol fuel cell. J Power Sources 196:3244–3248Google Scholar
  225. 225.
    An L, Zhao TS, Wu QX, Zeng L (2012) Comparison of different types of membrane in alkaline direct ethanol fuel cells. Int J Hydrogen Energ 37:14536–14542Google Scholar
  226. 226.
    Modestov AD, Tarasevich MR, Leykin AY, Filimonov VY (2009) MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes. J Power Sources 188:502–506Google Scholar
  227. 227.
    Tarasevich MR, Bogdanovskaya VA, Mazin PV (2010) Electrocatalysts and membrane for direct ethanol-oxygen fuel cell with alkaline electrolyte. Russ J Electrochem 46:542–551Google Scholar
  228. 228.
    Yu EH, Scott K, Reeve RW (2006) Application of sodium conducting membranes in direct methanol alkaline fuel cells. J Appl Electrochem 36:25–32Google Scholar
  229. 229.
    Hou H, Wang S, Jin W, Jiang Q, Sun L, Jiang L, Sun G (2011) KOH modified Nafion 112 membrane for high performance alkaline direct ethanol fuel cell. Int J Hydrogen Energ 36:5104–5109Google Scholar
  230. 230.
    Yang CC, Chiu SJ, Chien WC (2006) Development of alkaline direct methanol fuel cells based on crosslinked PVA polymer membranes. J Power Sources 162:21–29Google Scholar
  231. 231.
    Yang CC, Lee YJ, Chiu SJ, Lee KT, Chien WC, Lin CT, Huang CA (2008) Preparation of PVA/HAP composite polymer membrane for a direct ethanol fuel cell (DEFC). J Appl Electrochem 38:1329–1337Google Scholar
  232. 232.
    Yang CC, Chiu SJ, Lin CT (2008) Electrochemical performance of an air-breathing direct methanol fuel cell using poly(vinyl alcohol)/hydroxiapatite composite polymer membrane. J Power Sources 177:40–49Google Scholar
  233. 233.
    Yang CC (2007) Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. J Membr Sci 288:51–60Google Scholar
  234. 234.
    Yang CC, Chiu SJ, Lee KT, Chien WC, Lin CT, Huang CA (2008) Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. J Power Sources 184:44–51Google Scholar
  235. 235.
    Wang ED, Zhao TS, Yang WW (2010) Poly(vinyl alcohol)/3-(trimethyl ammonium)propyl- functionalized silica hybrid membranes for alkaline direct ethanol fuel cells. Int J Hydrogen Energ 35:2183–2189Google Scholar
  236. 236.
    Triphati BP, Kumar M, Shahi VK (2010) Organic–inorganic hybrid alkaline membranes by epoxide ring opening for direct methanol fuel cell applications. J Membr Sci 230:90–101Google Scholar
  237. 237.
    Zeng L, Zhao TS, Li YS (2012) Synthesis and characterization of crosslinked poly(vinyl alcohol)/layered double hydroxide composite polymer membranes for alkaline direct ethanol fuel cells. Int J Hydrogen Energ 37:18425–18432Google Scholar
  238. 238.
    Ganley JC, Karikari NK, Raghavan D (2010) Performance enhancement of alkaline direct methanol fuel cells by Ni/Al layered double hydroxides. J Fuel Cell Sci Technol 7:031019Google Scholar
  239. 239.
    Zhou T, Zhang J, Qiao J, Liu L, Jiang G, Zhang J, Liu Y (2013) High Durable poly(vinyl alcohol)/quaternized hydroxyethylcellulose ethoxylate anion exchange membranes for direct methanol alkaline fuel cells. J Power Sources 227:291–299Google Scholar
  240. 240.
    Xiong Y, Liu QL, Zhu AM, Huang SM, Zeng QH (2009) Performance of organic–inorganic hybrid anion-exchange membranes for alkaline direct methanol fuel cells. J Power Sources 186:328–333Google Scholar
  241. 241.
    Yang CC, Chiu SS, Kuo SC, Liou TH (2012) Fabrication of anion-exchange composite membranes for alkaline direct methanol fuel cells. J Power Sources 199:37–45Google Scholar
  242. 242.
    Yang CC, Chiu SJ, Chien WC, Chiu SS (2010) Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells. J Power Sources 195:2212–2219Google Scholar
  243. 243.
    Xiong Y, Liu QL, Zhang QG, Zhu AM (2008) Synthesis and characterization of cross-linked quaternized poly (vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells. J Power Sources 183:447–453Google Scholar
  244. 244.
    Yang JM, Chiu HC (2012) Preparation and characterization of polyvinyl alcohol/chitosan blended membrane for alkaline direct methanol fuel cells. J Membr Sci 419–420:65–71Google Scholar
  245. 245.
    Yang CC (2012) Alkaline direct methanol fuel cell based on a novel anion-exchange polymer membrane. J Appl Electrochem 42:305–317Google Scholar
  246. 246.
    Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Alkaline direct alcohol fuel cells using an anion exchange membrane. J Power Sources 150:27–31Google Scholar
  247. 247.
    Fujiwara N, Siroma Z, Yamazaki S, Ioroi T, Senoh H, Yasuda K (2008) Direct ethanol fuel cells using an anion exchange membrane. J Power Sources 185:621–626Google Scholar
  248. 248.
    Prakash GKS, Krause FC, Viva FA, Narayanan SR, Olah GA (2011) Study of operation conditions and cell design on the performance of alkaline anion exchange membrane based direct methanol fuel cells. J Power Sources 196:7967–7972Google Scholar
  249. 249.
    Bianchini C, Bambagioni V, Filippi J, Marchionni A, Vizza F, Bert P, Tampucci A (2009) Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells. Electrochem Commun 11:1077–1080Google Scholar
  250. 250.
    Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M (2009) Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct methanol alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). J Power Sources 190:241–251Google Scholar
  251. 251.
    Bianchini C, Shen PK (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109:4183–4206Google Scholar
  252. 252.
    Kim JH, Kim HK, Hwang KT, Lee JY (2010) Performance of air-breathing direct methanol fuel cell with anion-exchange membrane. Int J Hydrogen Energ 35:768–773Google Scholar
  253. 253.
    Li YS, Zhao TS, Liang ZX (2009) Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells. J Power Sources 187:387–392Google Scholar
  254. 254.
    Li YS, Zhao TS (2011) A high performance integrated electrode for anion-exchange membrane direct ethanol fuel cells. Int J Hydrogen Energ 36:7707–7713Google Scholar
  255. 255.
    An L, Zhao TS, Shen SY, Wu QX, Chen R (2010) Performance of a direct ethylene glycol fuel cell with an anion-exchange membrane. Int J Hydrogen Energ 35:4329–4335Google Scholar
  256. 256.
    Bunazawa H, Yamazaki Y (2009) Ultrasonic synthesis and evaluation of non-platinum catalysts for alkaline direct methanol fuel cells. J Power Sources 190:210–215Google Scholar
  257. 257.
    Shen SY, Zhao TS, Xu JB, Li YS (2010) Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J Power Sources 195:1001–1006Google Scholar
  258. 258.
    Coutanceau C, Demarconnay L, Lamy C, Léger JM (2006) Development of electrocatalysts for solid alkaline fuel cell (SAFC). J Power Sources 156:14–19Google Scholar
  259. 259.
    Yu EH, Scott K (2004) Direct methanol alkaline fuel cell with catalysed metal mesh anodes. Electrochem Commun 6:361–365Google Scholar
  260. 260.
    Yu EH, Scott K (2004) Development of direct methanol alkaline fuel cells using anion exchange membranes. J Power Sources 137:248–256Google Scholar
  261. 261.
    Yu EH, Scott K (2005) Direct methanol alkaline fuel cell with catalysed anion exchange membrane electrodes. J Appl Electrochem 35:91–96Google Scholar
  262. 262.
    Scott K, Yu EH, Vlachogiannopoulos G, Shivare M, Duteanu N (2008) Performance of a direct methanol alkaline membrane fuel cell. J Power Source 175:452–457Google Scholar
  263. 263.
    Lamy C, Simoes M, Coutanceau C, Léger JM (2009) Electrocatalytic oxidation of glycerol in a solid alkaline membrane fuel cell (SAMFC). In: Proceedings of ECS 216th meeting. Abstract 1046Google Scholar
  264. 264.
    Demarconnay L, Brimaud S, Coutanceau LJM (2007) Ethylene glycol oxidation in alkaline medium at multi-metallic Pt based catalysts. J Electroanal Chem 601:169–180Google Scholar
  265. 265.
    Santasalo-Aarnio A, Hietala S, Rauhala T, Kallio T (2011) In and ex situ characterization of an anion-exchange membrane for alkaline direct methanol fuel cell (ADMFC). J Power Sources 196:6153–6159Google Scholar
  266. 266.
    Mazin PV, Kapustina NA, Tarasevich MR (2011) Direct ethanol oxidation fuel cell with anionite membrane and alkaline electrolyte. Russ J Electrochem 47:275–281Google Scholar
  267. 267.
    Yu EH, Krewer U, Scott K (2010) Principles and materials aspects of direct alkaline alcohol fuel cells. Energies 3:1499–1528Google Scholar
  268. 268.
    Nandan D, Mohan H, Iyer RM (1992) Methanol and water uptake, densities, equivalental volumes and thicknesses of several uni- and divalent ionic perfluorosulphonate exchange membranes (Nafion 117) and their methanol–water fractionation behaviour at 298 K. J Membr Sci 71:69–80Google Scholar
  269. 269.
    Skou E, Kauranen P, Hentschel J (1997) Water and methanol uptake in proton conducting Nafion membranes. Solid State Ion 97:333–337Google Scholar
  270. 270.
    Hietala S, Maunu SL, Sundholm F (2000) Sorption and diffusion of methanol and water in PVDF-g-PSSA and Nafion 117 polymer electrolyte membranes. J Polym Sci Pol Phys 38:3277–3284Google Scholar
  271. 271.
    Gates CM, Newman J (2000) Equilibrium and diffusion of methanol and water in a Nafion 117 membrane. AIChE J 46:2076–2085Google Scholar
  272. 272.
    Rivin D, Kendrick CE, Gibson PW, Schneider NS (2001) Solubility and transport behavior of water and alcohols in Nafion. Polymer 42:623–635Google Scholar
  273. 273.
    Miyake N, Wainright JS, Savinell RF (2001) Evaluation of a sol–gel derived Nafion/silica hybrid membrane for polymer electrolyte membrane for polymer electrolyte membrane fuel cell applications. J Electrochem Soc 148:A905–A909Google Scholar
  274. 274.
    Jalani NH, Choi P, Datta R (2004) Phenomenological methanol sorption model for Nafion 117. Solid State Ion 175:815–817Google Scholar
  275. 275.
    Jalani NH, Choi P, Datta R (2005) TEOM: a novel technique for investigating sorption in proton-exchange membranes. J Membr Sci 254:31–38Google Scholar
  276. 276.
    Jalani NH, Datta R (2005) The effect of equivalent weight, temperature, cationic forms, sorbates and nanoinorganic additives on the sorption behaviour of Nafion. J Membr Sci 264:167–175Google Scholar
  277. 277.
    Saito M, Tsuzuki S, Hayamizu K, Okada T (2006) Alcohol and proton transport in perfluorinated ionomer membranes for fuel cells. J Phys Chem B 110:24410–24417Google Scholar
  278. 278.
    Hallinan DT Jr, Elabd YA (2007) Difusión and sorption of methanol and water in Nafion using time-resolved Fourier transform infrared-attenuated total reflectance spectroscopy. J Phys Chem B 111:13221–13230Google Scholar
  279. 279.
    Villaluenga JPG, Barragan VM, Izquierdo-Gil MA, Godino MP, Seoane B, Ruiz-Bauza C (2008) Comparative study of liquid uptake and permeation characteristics of sulfonated cation-exchange membranes in water and methanol. J Membr Sci 323:421–427Google Scholar
  280. 280.
    Diaz LA, Abuin GC, Corti HR (2012) Methanol sorption and permeability in Nafion and acid-doped PBI and ABPBI membranes. J Membr Sci 411–412:35–44Google Scholar
  281. 281.
    Zhao Q, Carro N, Ryu HY, Benziger J (2012) Sorption and transport of methanol and ethanol in H+-Nafion. Polymer 53:1267–1276Google Scholar
  282. 282.
    Saarinen V, Kreuer KD, Schuster M, Merkle R, Maier J (2007) On the swelling properties of proton conducting membranes for direct methanol fuel cells. Solid State Ion 178:533–537Google Scholar
  283. 283.
    Ren X, Springer TE, Gottesfeld S (2000) Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performances. J Electrochem Soc 147:92–98Google Scholar
  284. 284.
    Godino PM, Barragán VM, Izquierdo MA, Villaluenga JPG, Seoane B, Ruiz-Bauzá C (2009) Study of the activation energy for transport of water and methanol through a Nafion membrane. Chem Eng J 152:20–25Google Scholar
  285. 285.
    Chaabane L, Dammak L, Grande D, Larchet C, Huguet P, Nikonenko SV, Nikonenko VV (2011) Swelling and permeability of Nafion 117 in water–methanol solutions: an experimental and modelling investigation. J Membr Sci 377:54–64Google Scholar
  286. 286.
    Song S, Zhou W, Tian J, Cai R, Sun G, Xin Q, Kontou S, Tsiakaras P (2005) Ethanol crossover phenomena and its influence on the performance of DEFC. J Power Sources 145:266–271Google Scholar
  287. 287.
    Godino PM, Barragán VM, Villaluenga JPG, Izquierdo-Gil MA, Ruiz-Bauzá C, Seoane B (2010) Liquid transport through sulfonated cation-exchange membranes for different water-alcohol solutions. Chem Eng J 162:643–648Google Scholar
  288. 288.
    Wu Z, Sun G, Jin W, Hou H, Wang S (2008) A model for methanol transport through Nafion membrane in diffusion cell. J Membr Sci 325:376–382Google Scholar
  289. 289.
    Tricoli V (1998) Proton and methanol transport in poly(perfluorosulfonate) membranes containing Cs+ and H+ cations. J Electrochem Soc 145:3798–3801Google Scholar
  290. 290.
    Tricoli V, Carretta N, Bartolozi M (2000) A comparative investigation of proton and methanol transport in fluorinated ionomeric membranes. J Electrochem Soc 147:1286–1290Google Scholar
  291. 291.
    Schaffer T, Tschinder T, Hacker V, Besenhard JO (2006) Determination of methanol diffusion and electrosmotic drag coefficients in proton-exchange-membranes for DMFC. J Power Sources 153:210–216Google Scholar
  292. 292.
    Xue S, Yin G (2006) Methanol permeability in sulfonated poly (etheretherketone) membranes: A comparison with Nafion membranes. Eur Polym J 42:776–785Google Scholar
  293. 293.
    Kauranen P, Skou E (1996) Methanol permeability in perfluoro sulfonate proton exchange membranes at elevated temperatures. J Appl Electrochem 26:909–917Google Scholar
  294. 294.
    Ramya K, Dhathathreyan KS (2008) Methanol crossover studies of heat-treated Nafion membranes. J Membr Sci 311:121–127Google Scholar
  295. 295.
    Roualdes S, Topala I, Mahdjoub H, Rouessac V, Sistat P, Durand J (2006) Sulfonated polystyrene-type plasma-polimerized membranes for miniature direct methanol fuel cells. J Power Sources 158:1270–1281Google Scholar
  296. 296.
    Elabd YA, Napadensky E, Sloan JM, Crawford DM, Walker CW (2003) Triblock copolymer ionomer membranes. Part I. Methanol and proton transport. J Membr Sci 217:227–242Google Scholar
  297. 297.
    Verbrugge MW (1989) Methanol diffusion in perfluorinated ion-exchange membranes. J Electrochem Soc 136:417–423Google Scholar
  298. 298.
    Every HA, Hickner MA, McGrath JE, Zawodzinski JTA (2005) An NMR study of methanol diffusion in polymer electrolyte fuel cell membranes. J Membr Sci 250:183–188Google Scholar
  299. 299.
    Ren X, Springer T, Zawodzinski T, Gottesfeld S (2000) Methanol transport through Nafion membranes. Electrosmotic drag effects on potential step measurements. J Electrochem Soc 147:466–474Google Scholar
  300. 300.
    Hallberg F, Vernersson T, Pettersson ET, Dvinskikh SV, Lindbergh G, Furó I (2010) Electrokinetic transport of water and methanol in nafion membranes as observed by NMR spectroscopy. Electrochim Acta 55:3542–3549Google Scholar
  301. 301.
    Tschinder T, Schaffer T, Fraser SD, Hacker V (2007) Electro-osmotic drag of methanol in proton exchange membranes. J Appl Electrochem 37:711–716Google Scholar
  302. 302.
    Ma CH, Yu TS, Lin HS, Huang YT, Chen YL, Jeng US, Lai YH, Sun YS (2009) Morphology and properties of Nafion membranes prepared by solution casting. Polymer 50:1764–1777Google Scholar
  303. 303.
    Xue S, Yin G, Cai K, Shao Y (2007) Permeabilities of methanol, ethanol and dimethyl ether in new composite membranes: a comparison with Nafion membranes. J Membr Sci 289:51–57Google Scholar
  304. 304.
    Kontou S, Stergiopoulos V, Song S, Tsiakaras P (2007) Ethanol/water mixture permeation through a Nafion based membrane electrode assembly. J Power Sources 171:1–7Google Scholar
  305. 305.
    Slade S, Campbell SA, Ralph TR, Walsh FC (2002) Ionic conductivity of an extruded Nafion 1100 EW series of membranes. J Electrochem Soc 149:A1556–A1564Google Scholar
  306. 306.
    Yadav R, Fedkiw PS (2012) Analysis of EIS technique and Nafion 117 conductivity as a function of temperature and relative humidity. J Electrochem Soc 159:B340–B346Google Scholar
  307. 307.
    Gardner CL, Anantaraman AV (1998) Studies on ion-exchange membranes. II. Measurement of the anisotropic conductance of Nafion. J Electroanal Chem 449:209–214Google Scholar
  308. 308.
    Anantaraman AV, Gardner CL (1996) Studies on ion-exchange membranes. I. Effect of humidity on the conductivity of Nafion. J Electroanal Chem 414:115–120Google Scholar
  309. 309.
    Wintersgill MC, Fontanella JJ (1998) Complex impedance measurements on Nafion. Electrochim Acta 43:1533–1538Google Scholar
  310. 310.
    Lufrano F, Gatto I, Staiti P, Antonucci V, Passalacqua E (2001) Sulfonated polysulfone ionomer membranes for fuel cells. Solid State Ion 145:47–51Google Scholar
  311. 311.
    Yang C, Costamagna P, Srinivasan S, Benziger J, Bocarsly AB (2001) Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. J Power Sources 103:1–9Google Scholar
  312. 312.
    Damay F, Klein LC (2003) Transport properties of Nafion composite membranes for proton-exchange membranes fuel cells. Solid State Ion 162–163:261–267Google Scholar
  313. 313.
    Ochi S, Kamishima O, Mizusaki J, Kawamura J (2009) Investigation of proton diffusion in Nafion 117 membrane by electrical conductivity and NMR. Solid State Ion 180:580–584Google Scholar
  314. 314.
    Wu X, Wang X, He G, Benziger J (2011) Differences in water sorption and proton conductivity between Nafion and SPEEK. J Polym Sci Pol Phys 49:1437–1445Google Scholar
  315. 315.
    Aricó AS, Baglio V, Di Blasi A, Antonucci V (2003) FTIR spectroscopic investigation of inorganic fillers for composite DMFC membranes. Electrochem Commun 5:862–866Google Scholar
  316. 316.
    Siroma Z, Kakitsubo R, Fujiwara N, Ioroi T, Yamazaki S, Yasuda K (2009) Depression of proton conductivity in recast Nafion film measured on flat substrate. J Power Sources 189:994–998Google Scholar
  317. 317.
    Abuin GC, Fuertes MC, Corti HR (2013) Substrate effect on the swelling and water sorption of Nafion nanomembranes. J Membr Sci 428:507–515Google Scholar
  318. 318.
    Sone Y, Ekdunge P, Simonsson D (1998) Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method. J Electrochem Soc 143:1254–1259Google Scholar
  319. 319.
    Paddison SJ (2001) The modeling of molecular structure and ion transport in sulfonic acid based ionomer membranes. J New Mat Electrochem Syst 4:197–207Google Scholar
  320. 320.
    Savinell R, Yeager E, Tryk D, Landau U, Wainright J, Weng D, Lux K, Litt M, Rogers C (1994) A polymer electrolyte for operation at temperatures up to 200 °C. J Electrochem Soc 141:L46–L48Google Scholar
  321. 321.
    Edmondson CA, Stallworth PE, Wintergill MC, Fontanella JJ, Dai Y, Greenbaum SG (1998) Electrical conductivity and NMR studies of methanol/water mixtures in Nafion membranes. Electrochim Acta 43:1295–1299Google Scholar
  322. 322.
    Saito M, Ikesaka S, Kuwano J, Qiao J, Tsuzuki S, Hayamizu K, Okada T (2007) Mechanisms of proton transport in alcohol-penetrated perfluorosulfonated ionomer membranes for fuel cells. Solid State Ion 178:539–545Google Scholar
  323. 323.
    Chaabane L, Bulvestre G, Larchet C, Nikonenko V, Deslouis C, Takenouti H (2008) The influence of absorbed methanol on the swelling and conductivity properties of cation-exchange membranes. Evaluation of nanostructure parameters. J Membr Sci 323:167–175Google Scholar
  324. 324.
    Pivovar BS, Smyrl WH, Cussler EL (2005) Electro-osmosis in Nafion 117, polystyrene sulfonic acid, and polybenzimidazole. J Electrochem Soc 152:A53–A60Google Scholar
  325. 325.
    Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25:1463–1502Google Scholar
  326. 326.
    Kim YS, Kim DS, Guiver MD, Pivovar BS (2011) Interpretation of direct methanol fuel cell electrolyte properties using non-traditional length-scale parameters. J Membr Sci 374:49–58Google Scholar
  327. 327.
    Ren X, Wilson MS, Gottesfeld S (1996) High performance direct methanol polymer electrolyte fuel cells. J Electrochem Soc 143:L12–L15Google Scholar
  328. 328.
    Meyers JP, Newman J (2002) Simulation of the direct methanol fuel cell. III. Design and optimization. J Electrochem Soc 149:A729–A735Google Scholar
  329. 329.
    Jiang Z, Zheng X, Wu H, Pan F (2008) Proton conducting membranes prepared by incorporation of organophosphorous acids into alcohol barrier polymers for direct methanol fuel cells. J Power Sources 185:85–94Google Scholar
  330. 330.
    Tsai CE, Lin CW, Hwang BJ (2010) A novel crosslinking strategy for preparing poly(vinyl alcohol)-based proton-conducting membranes with high sulfonation. J Power Sources 195:2166–2173Google Scholar
  331. 331.
    Kim DS, Guiver MD, Nam SY, Yun TI, Seo MY, Kim SJ, Hwang HS, Rhim JW (2006) Preparation of ion exchange membranes for fuel cellbased on crosslinked poly(vinyl alcohol) with poly(styrene sulfonic acid-co-maleic acid). J Membr Sci 281:156–162Google Scholar
  332. 332.
    Kang MS, Kim JH, Won J, Moon SH, Kang YS (2005) Highly charged proton exchange membranes prepared by using water soluble polymer blends for fuel cells. J Membr Sci 247:127–135Google Scholar
  333. 333.
    Lin CW, Huang YF, Kannan AM (2007) Cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride)-based semi-interpene trating network as proton-conducting membranes for direct methanol fuel cells. J Power Sources 171:340–347Google Scholar
  334. 334.
    Wu CS, Lin FY, Chen CY, Chu PP (2006) A polyvinyl alcohol/p-sulfonate phenolic resin composite proton conducting membrane. J Power Sources 160:1204–1210Google Scholar
  335. 335.
    Fang Y, Miao R, Wang T, Wang X (2009) Suppresion of methanol cross-over in novel composite membranes for direct methanol fuel cells. Pure Appl Chem 81:2309–2316Google Scholar
  336. 336.
    Huang YF, Chuang LC, Kannan AM, Lin CW (2009) Proton-conducting membranes with high selectivity from cross-linked poly(vinyl alcohol) and poly(vinyl pyrrolidone) for direct methanol fuel cell applications. J Power Sources 186:22–28Google Scholar
  337. 337.
    Tripathi BP, Saxena A, Shahi VK (2008) Phosphonic acid grafted bis(4-γ-aminopropyl diethoxysilylphenyl)sulfone (APDSPS)-poly(vinyl alcohol) cross-linked polyelectrolyte membrane impervious to methanol. J Membr Sci 318:288–297Google Scholar
  338. 338.
    Binsu VV, Nagarale RK, Shahi VK (2005) Phosphonic acid functionalized aminopropyl triethoxysilane-PVA composite material: organic–inorganic hybrid proton-exchange membranes in aqueous media. J Mater Chem 15:4823–4831Google Scholar
  339. 339.
    Tseng CY, Ye YS, Kao KY, Joseph J, Shen WC, Rick J, Hwang BJ (2011) Interpenetrating network-forming sulfonated poly(vinyl alcohol) proton exchange membranes for direct methanol fuel cell applications. Int J Hydrogen Energ 36:11936–11945Google Scholar
  340. 340.
    Higa M, Sugita M, Maesowa S, Endo N (2010) Poly(vinyl alcohol)-based polymer electrolyte membranes for direct methanol fuel cells. Electrochim Acta 55:1445–1449Google Scholar
  341. 341.
    Higa M, Hatemura K, Sugita M, Maesowa S, Nishimura M, Endo N (2012) Performance of passive direct methanol fuel cell with poly(vinyl alcohol)-based polymer electrolyte membranes. Int J Hydrogen Energ 37:6292–6301Google Scholar
  342. 342.
    Chang YW, Wang E, Shin G, Han JE, Mather PT (2007) Poly(vinyl alcohol) (PVA)/sulfonated polyhedral oligosilsesquioxane (sPOSS) hybrid membranes for direct methanol fuel cell applications. Polym Adv Technol 18:535–543Google Scholar
  343. 343.
    Hwang BJ, Joseph J, Zeng YZ, Lin CW, Cheng MY (2011) Analysis of states of water in poly(vinyl alcohol) based DMFC membranes using FTIR and DSC. J Membr Sci 369:88–95Google Scholar
  344. 344.
    Kim DS, Park HB, Rhim JW, Lee YM (2004) Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. J Membr Sci 240:37–48Google Scholar
  345. 345.
    Kim DS, Park HB, Rhim JW, Lee YM (2005) Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes. Solid State Ion 176:117–126Google Scholar
  346. 346.
    Tripathi BP, Shahi VK (2008) Functionalized organic–inorganic nanostructurated N-p-carboxy benzyl chitosan-silica-PVA hybrid polyelectrolyte complex as proton exchange membrane for DMFC applications. J Phys Chem B 112:15678–15690Google Scholar
  347. 347.
    Cho EB, Kim H, Kim D (2009) Effect of morphology and pore size of sulfonated mesoporous benzene-silicas in the preparation of poly(vinyl alcohol)-based hybrid nanocomposite membranes for direct methanol fuel cell application. J Phys Chem B 113:9770–9778Google Scholar
  348. 348.
    Zhong S, Cui X, Dou S, Liu W, Gao Y, Hong B (2010) Improvement in silicon-containing sulfonated polystyrene/acrylate membranes by blending and crosslinking. Electrochim Acta 55:8410–8415Google Scholar
  349. 349.
    Yang T (2009) Poly(vinyl alcohol)/sulfonated β-cyclodextrin for direct methanol fuel cell applications. Int J Hydrogen Energ 34:6917–6924Google Scholar
  350. 350.
    Yang CC, Lee YJ, Yang JM (2009) Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes. J Power Sources 188:30–37Google Scholar
  351. 351.
    Yang CC, Lee YJ (2009) Preparation of the acidic PVA/MMT nanocomposite polymer membrane for the direct methanol fuel cell (DMFC). Thin Solids Films 517:4735–4740Google Scholar
  352. 352.
    Kim DS, Park IC, Cho HI, Kim DH, Moon GY, Lee HK, Rhim JW (2009) Effect of organo clay content on proton conductivity and methanol transport through crosslinked PVA hybrid membrane for direct methanol fuel cell. J Ind Eng Chem 15:265–269Google Scholar
  353. 353.
    Anis A, Banthia AK, Bandyopadhyay S (2008) Synthesis and characterization of polyvinyl alcohol copolymer/phosphomolybdic acid-baed crosslinked composite polymer electrolyte membranes. J Power Sources 179:69–80Google Scholar
  354. 354.
    Madaeni SS, Amirinejad S, Aminirejad M (2011) Phosphotungstic acid doped poly(vinyl alcohol)/poly(ether sulfone) blend composite membranes for direct methanol fuel cells. J Membr Sci 380:132–137Google Scholar
  355. 355.
    Helen M, Viswanathan B, Srinivasa Murthy S (2006) Fabrication and properties of hybrid membranes based on salts of heteropolyacid, zirconium phosphate and polyvinyl alcohol. J Power Sources 163:433–439Google Scholar
  356. 356.
    Üçtuğ FG, Holmes SM (2011) Characterization and fuel cell performance analysis of polyninylalcohol-modrdenite mixed-matrix membranes for direct methanol fuel cell use. Electrochim Acta 56:8446–8456Google Scholar
  357. 357.
    Panero S, Fiorenza P, Navarra MA, Romanowska J, Scrosati B (2005) Silica-added, composite poly(vinyl alcohol) membranes for fuel cell application. J Electrochem Soc 152:A2400–A2405Google Scholar
  358. 358.
    Yang CC, Chien WC, Li YJ (2010) Direct methanol fuel cell based on poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrenesulfonic acid)(PVA/nt-TiO2/PSSA) composite polymer membrane. J Power Sources 195:3407–3415Google Scholar
  359. 359.
    Yang CC (2011) Fabrication and characterization of poly(vinyl alcohol)/montmorillonite/poly(styrene sulfonic acid) proton-conducting composite membranes for direct methanol fuel cells. Int J Hydrogen Energ 36:4419–4431Google Scholar
  360. 360.
    Yang CC, Lue SJ, Shih JY (2011) A novel organic/inorganic polymer membrane based on poly(vinyl alcohol)/poly(2-acrylamido-2-methyl-1-propane sulfonic acid/3-glycidyloxypropyl trimethoxysilane) polymer electrolyte membrane for direct methanol fuel cells. J Power Sources 196:4458–4467Google Scholar
  361. 361.
    Bhat SD, Sahu AK, George C, Pitchumani S, Sridhar P, Chandrakumar N, Singh KK, Krishna N, Shukla AK (2009) Mordenite-incorporated PVA-PSSA membranes as electrolytes for DMFCs. J Membr Sci 340:73–83Google Scholar
  362. 362.
    Yang T (2009) Composite membrane of sulfonated poly(ether ether ketone)and sulfated poly(vinyl alcohol) for use in direct methanol fuel cells. J Membr Sci 342:221–226Google Scholar
  363. 363.
    de Souza GA, Dutra Filho JC (2012) Hybrid membranes of PVA for direct ethanol fuel cell (DEFCs) applications. Int J Hydrogen Energ 37:6246–6252Google Scholar
  364. 364.
    Li L, Zhang J, Wang Y (2003) Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells. J Membr Sci 226:159–167Google Scholar
  365. 365.
    Gil M, Ji X, Li X, Na H, Hampsey JE, Lu Y (2004) Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cells applications. J Membr Sci 234:75–81Google Scholar
  366. 366.
    Sue S, Yin G (2006) Methanol permeability in sulfonated poly(etheretherketone) membranes: a comparison with Nafion membranes. Eur Polym J 42:776–785Google Scholar
  367. 367.
    Jaafar J, Ismail AF, Mustafa A (2007) Physicochemical study of poly (ether ether ketone) membranes sulfonated with mixtures of fuming sulfuric acid and sulfuric acid for direct methanol fuel cell application. Mater Sci Eng A 460–461:475–484Google Scholar
  368. 368.
    Mohd Norddin MNA, Ismail AF, Rana D, Matsuura T, Mustafa A, Tabe-Mohammadi A (2008) Characterization and performance of proton exchange membranes for direct methanol fuel cell: blending of sulfonated poly(ether ether ketone) with charged surface modyfying macromolecule. J Membr Sci 323:404–413Google Scholar
  369. 369.
    Zhong S, Cui X, Fu T, Na H (2008) Modification of sulfonated poly(ether ether ketone) proton exchange membrane for reducing methanol crossover. J Power Sources 180:23–28Google Scholar
  370. 370.
    Ismail AF, Othman NH, Mustafa A (2009) Sulfonated polyether ether ketone composite membrane using tungstosilic acid supported on silica-aluminium oxide for direct methanol fuel cell (DMFC). J Membr Sci 329:18–29Google Scholar
  371. 371.
    Gao Q, Wang Y, Xu L, Wei G, Wang Z (2009) Proton-exchange sulfonated poly(ether ether ketone) (SPEEK)/SiOx-S composite membranes in direct methanol fuel cells. Chinese J Chem Eng 17:207–213Google Scholar
  372. 372.
    Li H, Zhang G, Ma W, Zhao C, Zhang Y, Han M, Zhu J, Liu Z, Wu J, Na H (2010) Composite membranes based on a novel benzimidazole grafted PEEK and SPEEK for fuel cells. Int J Hydrogen Energ 35:11172–11179Google Scholar
  373. 373.
    Yang T, Liu C (2011) SPEEK/sulfonted cyclodextrin blend membranes for direct methanol fuel cell. Int J Hydrogen Energ 36:5666–5674Google Scholar
  374. 374.
    Gosalawit R, Chirachanchai S, Shishatskiy S, Nunes SP (2008) Sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs). J Membr Sci 323:337–346Google Scholar
  375. 375.
    Zhang Y, Shao K, Zhao G, Zhang G, Li H, Fu T, Na H (2009) Novel sulfonated poly(ether ether ketone) with pendant benzimidazole groups as a proton exchange membrane for direct methanol fuel cells. J Power Sources 194:175–181Google Scholar
  376. 376.
    Li X, Zhao C, Lu H, Wang Z, Na H (2005) Direct synthesis of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) proton exchange membranes for fuel cells applications. Polymer 46:5820–5827Google Scholar
  377. 377.
    Ponce ML, Prado L, Ruffmann B, Richau K, Mohr R, Nunes SP (2003) Reduction of methanol permeability in polyetherketone – heteropolyacid membranes. J Membr Sci 217:5–15Google Scholar
  378. 378.
    Luo H, Vaivars G, Mathe M (2009) Cross-linked PEEK-WC proton exchange membrane for fuel cell. Int J Hydrogen Energ 34:8616–8621Google Scholar
  379. 379.
    Wang J, Zhao C, Li M, Zhang L, Ni J, Ma W, Na H (2012) Benzimidazole-cross-linked proton exchange membranes for direct methanol fuel cells. Int J Hydrogen Energ 37:9330–9339Google Scholar
  380. 380.
    Wang J, Zhao C, Zhang L, Li M, Ni J, Wang S, Ma W, Liu Z, Na H (2012) Cross-linked proton exchange membranes for direct methanol fuel cells: effects of the cross-linker structure on the performances. Int JHydrogen Energ 37:12586–12596Google Scholar
  381. 381.
    Jung HY, Park JK (2007) Blend membranes based on sulfonated poly(ether ether ketone) and poly(vinyllidene fluoride) for high performance direct methanol fuel cell. Electrochim Acta 52:7464–7468Google Scholar
  382. 382.
    Xue S, Yin G, Cai K, Shao Y (2007) Permeabilities of methanol. ethanol and fullydimethyl ether in new composite membranes: a comparison with Nafion membranes. J Membr Sci 289:51–57Google Scholar
  383. 383.
    Na T, Shao K, Zhu J, Sun H, Xu D, Zhang Z, Lew CM, Zhang G (2013) Composite membranes based on fully sulfonated poly(aryl ether ketone)/epoxy resin/different curing agents for direct methanol fuel cells. J Power Sources 230:290–297Google Scholar
  384. 384.
    Lin H, Zhao C, Jiang Y, Ma W, Na H (2011) Novel hybrid polymer electrolyte membranes with high proton conductivity prepared by a silane-crosslinking technique for direct methanol fuel cells. J Power Sources 196:1744–1749Google Scholar
  385. 385.
    Choi J, Kim DH, Kim HK, Shin C, Kim SC (2008) Polymer blend membranes of sulfonated poly(arylene ether ketone) for direct methanol fuel cells. J Membr Sci 310:384–392Google Scholar
  386. 386.
    Zhao C, Lin H, Na H (2010) Novel cross-linked sulfonated poly(arylene ether ketone) membranes for direct methanol fuel cell. Int J Hydrogen Energ 35:2176–2182Google Scholar
  387. 387.
    Zhang Y, Fei X, Zhang G, Li H, Shao K, Zhu J, Zhao C, Liu Z, Han M, Na H (2010) Preparation and properties of epoxy-based cross-linked sulfonated poly(arylene ether ketone) proton exchange membrane for direct methanol fuel cell applications. Int J Hydrogen Energ 35:6409–6417Google Scholar
  388. 388.
    Wang J, Zhao C, Lin H, Zhang G, Zhang Y, Ni J, Ma W, Na H (2011) Design of a stable and methanol resistant membrane with cross-linked multilayered polyelectrolyte complexes for direct methanol fuel cells. J Power Sources 196:5432–5437Google Scholar
  389. 389.
    Jiang Z, Zhao X, Manthiram A (2013) Sulfonated poly(ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells. Int J Hydrogen Energ 38:5875–5884Google Scholar
  390. 390.
    Ren S, Li C, Zhao X, Wu Z, Wang S, Sun G, Xin Q, Yang X (2005) Surface modification of sulfonated poly(ether ether ketone) membranes usin Nafion solution for direct methanol fuel cells. J Membr Sci 247:59–63Google Scholar
  391. 391.
    Zhang H, Fan X, Zhang J, Zhou Z (2008) Modification research of sulfonated PEEK membranes used in DMFC. Solid State Ion 179:1409–1412Google Scholar
  392. 392.
    Zhang W, Gogel V, Friedrich KA, Kerres J (2006) Novel covalently cross-linked poly(etheretherketone) ionomer membranes. J Power Sources 155:3–12Google Scholar
  393. 393.
    Tsai JC, Lin CK (2011) Preparation of main-chain-type and side-chain-type sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell applications. J Power Sources 196:9308–9316Google Scholar
  394. 394.
    Yang T (2009) Composite membrane of sulfonated poly(ether ether ketone) and sulfated poly(vinyl alcohol) for use in direct methanol fuel cells. J Membr Sci 342:221–226Google Scholar
  395. 395.
    Fu Y, Manthiram A, Guiver MD (2007) Acid–base blend membranes based on 2-amino-benzimidazole and sulfonated poly(ether ether ketone) for direct methanol fuel cells. Electrochem Commun 9:905–910Google Scholar
  396. 396.
    Li X, Liu C, Xu D, Zhao C, Wang Z, Zhang G, Na H, Xing W (2006) Preparation and properties of sulfonated poly(ether ether ketone)s (SPEEK)/polypyrrole composite membranes for direct methanol fuel cells. J Power Sources 162:1–8Google Scholar
  397. 397.
    Li W, Manthiram A, Guiver MD, Liu B (2010) High performance direct methanol fuel cells based on acid–base blend membranes containing benzotriazole. Electrochem Commun 12:607–610Google Scholar
  398. 398.
    Zuo Z, Zhao X, Manthiram A (2013) High-performance blend membranes composed of an amphoteric copolymer containing supramolecular nanosieves for direct methanol fuel cells. RSC Adv 3:6759–6762Google Scholar
  399. 399.
    Mecheri B, D´Epifanio A, Traversa E, Licoccia S (2008) Sulfonated polyether ether ketone and hydrated tin oxide proton conducting composites for direct methanol fuel cell applications. J Power Sources 178:554–560Google Scholar
  400. 400.
    Lee JK, Li W, Manthiram A (2009) Poly(arylene ether sulfone)s containing pendant sulfonic acid groups as membrane materials for direct methanol fuel cells. J Membr Sci 330:73–79Google Scholar
  401. 401.
    Roelofs KS, Hirth T, Schiestel T (2010) Sulfonated poly(ether ether ketone)-based silica nanocomposite membranes for direct ethanol fuel cells. J Membr Sci 346:215–226Google Scholar
  402. 402.
    Maab H, Pereira Nunes S (2010) Modified SPEEK membranes for direct ethanol fuel cell. J Power Sources 195:4036–4042Google Scholar
  403. 403.
    Wainright JS, Wang J-T, Weng D, Savinell RF, Litt M (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142:L121–L123Google Scholar
  404. 404.
    Samms SR, Wasmus S, Savinell RF (1996) Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments. J Electrochem Soc 143:1225–1232Google Scholar
  405. 405.
    Wang J-T, Wainright JS, Savinell RF, Litt M (1996) A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte. J Appl Electrochem 26:751–756Google Scholar
  406. 406.
    Bouchet R, Siebert E (1999) Proton conduction in acid doped polybenzimidazole. Solid State Ion 118:287–299Google Scholar
  407. 407.
    He R, Li Q, Jensen JO, Bjerrum NJ (2007) Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cell. J Polym Sci Pol Chem 45:2989–2997Google Scholar
  408. 408.
    Lobato J, Cañizares P, Rodrigo MA, Linares JJ, Manjavacas G (2006) Synthesis and characterization of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs. J Membr Sci 280:351–362Google Scholar
  409. 409.
    Diaz LA, Abuin GC, Corti HR (2009) Water and phosphoric acid uptake of poly [2,5-benzimidazole] (ABPBI) membranes prepared by low and high temperature casting. J Power Sources 188:45–50Google Scholar
  410. 410.
    Wang J-T, Wasmus S, Savinell RF (1996) Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell. J Electrochem Soc 143:1233–1239Google Scholar
  411. 411.
    Weng D, Wainright JS, Landau U, Savinell RF (1996) Electro-osmotic drag coefficient of water and methanol in polymer electrolytes at elevated temperatures. J Electrochem Soc 143:1260–1263Google Scholar
  412. 412.
    Li Q, Hjuller HA, Bjerrum NJ (2001) Phosphoric acid doped polybenzimidazole membranes: physicochemical characterization and fuel cell applications. J Appl Electrochem 31:773–779Google Scholar
  413. 413.
    Pu H, Liu Q (2004) Methanol permeation and proton conductivity of polybenzimidazole and sulfonated polybenzimidazole. Polym Int 53:1512–1516Google Scholar
  414. 414.
    Chuang SW, Hsu LC, Hsu CL (2007) Synthesis and properties of fluorine-containing polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications. J Power Sources 168:172–177Google Scholar
  415. 415.
    Wycisk R, Lee JK, Pintauro PN (2005) Sulfonated polyphosphazene-polybenzimidazole membranes for DMFCs. J Electrochem Soc 152:A892–A898Google Scholar
  416. 416.
    Zhang H, Li X, Zhao C, Fu T, Shi Y, Na H (2008) Composite membranes based on highly sulphonated PEEK and PBI: morphology characteristics and performance. J Membr Sci 308:66–74Google Scholar
  417. 417.
    Glipa X, Bonnet B, Mula B, Jones DJ, Rozière J (1999) Investigation of the conduction properties of phosphoric and sulphuric acid doped polybenzoimidazole. J Mater Chem 9:3045–3049Google Scholar
  418. 418.
    Lobato J, Cañizares P, Rodrigo MA, Linares JJ, Aguilar JÁ (2007) Improved polybenzimidazole films for H3PO4-doped PBI-based a vapour-fed polybenzoimidazole (PBI).based high temperature PEMFC. J Membr Sci 306:47–53Google Scholar
  419. 419.
    Asensio JA, Borrós S, Gómez-Romero P (2003) Enhanced conductivity in polyanion-containing polybenzimidazoles. Improved materials for próton-exchange membranes and PEM fuel cells. Electrochem Commun 5:967–972Google Scholar
  420. 420.
    Ma YL, Wainright JS, Litt M, Savinell RF (2004) Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. J Electrochem Soc 151:A8–A16Google Scholar
  421. 421.
    He R, Li Q, Xiao G, Bjerrum NJ (2003) Próton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic próton conductors. J Membr Sci 226:169–184Google Scholar
  422. 422.
    He R, Li Q, Bach A, Jensen JO, Bjerrum NJ (2006) Physicochemical properties of phos phoric acid doped polybenzimidazole membranes for fuel cells. J Membr Sci 277:38–45Google Scholar
  423. 423.
    Hasiotis C, Deimede V, Kontoyannis C (2001) New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole. Electrochim Acta 46:2401–2406Google Scholar
  424. 424.
    Schechter A, Savinell RF (2002) Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells. Solid State Ion 147:181–187Google Scholar
  425. 425.
    Diaz L (2012) Thesis. study of PBI and ABPBI membranes for high temperature and methanol fed fuel cells. University of General San Martin (UNSAM)Google Scholar
  426. 426.
    Mecerreyes D, Grande H, Miguel O, Ochoteco E, Marcilla R, Cantero I (2004) Porous polybenzimidazole membranes doped with phosphoric acid: highly proton-conducting solid electrolyte. Chem Mater 16:604–607Google Scholar
  427. 427.
    Weber J, Kreuer KD, Maier J, Thomas A (2008) Proton conductivity enhancement by nanostructural control of poly(benzimidazole)-phosphoric acid adducts. Adv Mater 20:2595–2598Google Scholar
  428. 428.
    Li Q, Pan C, Jensen JO, Noye P, Bjerrum NJ (2007) Cross-linked polybenzimidazole membranes for fuel cells. Chem Mater 19:350–352Google Scholar
  429. 429.
    Xu H, Chen K, Guo X, Fang J, Yin J (2007) Synthesis of hyperbranched polybenzimidazoles and their membrane formation. J Membr Sci 288:255–260Google Scholar
  430. 430.
    Leikin AY, Rusanov AL, Begunov RS, Fomenkov AI (2009) Synthesis and properties of poly[2-(4′-oxyphenylene)-5- benzimidazole] and a proton-exchange membrane produced on its basis. Polym Sci Ser C 51:12–16Google Scholar
  431. 431.
    Kim SK, Kim TH, Jung JW, Lee JC (2009) Polybenzimidazole containing benzimidazole side groups for high-temperature fuel cells applications. Polymer 50:3495–3502Google Scholar
  432. 432.
    Qian G, Benicewicz BC (2009) Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte fuel cells. J Polym Sci Pol Chem 47:4064–4073Google Scholar
  433. 433.
    Chuang SW, Hsu SLC, Yang ML (2008) Preparation and characterization of fluorine-containing polybenzimidazole/imidazole hybrid membranes for proton exchange membrane fuel cells. Eur Polym J 44:2202–2206Google Scholar
  434. 434.
    Lobato J, Cañizares P, Rodrigo MA, Linares JJ, Lopez-Vizcaino R (2008) Performance of a vapor-fed polybenzimidazole (PBI)-based direct methanol fuel cell. Energy Fuel 22:3335–3345Google Scholar
  435. 435.
    Haghighi AH, Hasani-Sabradabi MM, Dashtimoghadam E, Bahlakeh G, Shakeri SE, Majedi FS, Emami SH, Moadedel H (2011) Direct methanol fuel cell performance of sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)-polybenzimi dazole blend proton exchange membrane. Int J Hydrogen Energ 36:3688–3696Google Scholar
  436. 436.
    Pasupathi S, Ji S, Bladergroen BJ, Linkov V (2008) High DMFC performance output using modified acid–base polymer blend. Int J Hydrogen Energ 33:3132–3136Google Scholar
  437. 437.
    Kerres J, Zhang W, Jörissen L, Gogel V (2002) Application of different types of polyaryl-blend-membranes in DMFC. J New Mater Electrochem Syst 5:97–107Google Scholar
  438. 438.
    Jörissen L, Gogel V, Kerres L, Garche J (2002) New membranes for direct methanol fuel cells. J Power Sources 105:267–273Google Scholar
  439. 439.
    Silva VS, Weisshaar S, Reissner R, Ruffmann B, Vetter S, Mendes A, Madeira LM, Nunes S (2005) Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperatures. J Power Sources 145:485–494Google Scholar
  440. 440.
    Lobato J, Cañizares P, Rodrigo MA, Linares JJ (2009) Study of different bimetallic anodic catalysts supported on carbon for a high temperature polybenzimidazole-based direct ethanol fuel cell. Appl Catal B-Environ 91:269–274Google Scholar
  441. 441.
    Linares JJ, Rocha TA, Zignani S, Paganin VA, Gonzalez ER (2013) Different anode catalyst for high temperature polybenzimidazole-based direct ethanol fuel cells. Int J Hydrogen Energ 38:620–630Google Scholar
  442. 442.
    Asensio JA, Borrós S, Gómez-Romero P (2004) Polymer electrolyte fuel cells based on phosphoric acid-impregnated poly(2,5-benzimidazole) membranes. J Electrochem Soc 151:A304–A310Google Scholar
  443. 443.
    Asensio JA, Borrós S, Gómez-Romero P (2004) Proton-conducting membranes based on poly(2,5-benzimidazole) (ABPBI) and phosphoric acid prepared by direct acid casting. J Membr Sci 241:89–93Google Scholar
  444. 444.
    Gómez-Romero P, Asensio JA, Borrós S (2005) Hybrid proton-conducting membranes for polymer electrolyte fuel cells. Phosphomolybdic acid doped poly(2,5-benzimidazole) – (ABPBI-H3PMo12O40). Electrochim Acta 50:4715–4720Google Scholar
  445. 445.
    Asensio JA, Gómez-Romero P (2005) Recent developments on proton conducting poly(2,5-benzimidazole) (ABPBI) membranes for high temperature polymer electrolyte membrane fuel cells. Fuel Cells 5:336–343Google Scholar
  446. 446.
    Krishnan P, Park JS, Kim CS (2006) Performance of a poly(2,5-benzimidazole) membrane based high temperature PEM fuel cell in the presence of carbon monoxide. J Power Sources 159:817–823Google Scholar
  447. 447.
    Kim HJ, Cho SY, An SJ, Eun YC, Kim JY, Yoon HK, Kweon HJ, Yew KH (2004) Synthesis of poly(2,5-benzimidazole) for use as a fuel-cell membrane. Macromol Rapid Commun 25:894–897Google Scholar
  448. 448.
    Wannek C, Lehnert W, Mergel J (2009) Membrane electrode assemblies for high-temperature polymer electrolyte fuel cells based on poly (2,5-benzimidazole) membranes with phosphoric acid impregnation via the catalyst layer. J Power Sources 192:258–266Google Scholar
  449. 449.
    Gulledge AL, Gu B, Benicewicz BC (2012) A new sequence isomer of AB-polybenzimidazole for high temperature PEM fuel cells. J Polym Sci Pol Chem 50:306–313Google Scholar
  450. 450.
    Acar O, Sen U, Bozkurt A, Ata A (2009) Proton conducting membranes based on poly (2,5-benzimidazole) (ABPBI)-poly(vinylphosphonic acid) blends for fuel cells. Int J Hydrogen Energ 34:2724–2730Google Scholar
  451. 451.
    Genies C, Mercier R, Sillion B, Cornet N, Gebel G, Pineri M (2001) Soluble sulfonated naphtalenic polyimides as materiasl for proton exchange membranes. Polymer 42:359–373Google Scholar
  452. 452.
    Woo Y, Oh SY, Kang YS, Jung B (2003) Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell. J Membr Sci 220:31–45Google Scholar
  453. 453.
    Einsla BR, Kim YS, Hickner MA, Hong YT, Hill ML, Pivovar BS, McGrath JE (2005) Sulphonated naphtalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells. II. Membrane properties and fuel cell performance. J Membr Sci 255:141–148Google Scholar
  454. 454.
    Song JM, Miyatake K, Uchida H, Watanabe M (2006) Investigation of direct methanol fuel cell performance of sulfonated polyimide membrane. Electrochim Acta 51:4497–4504Google Scholar
  455. 455.
    Higuchi E, Asano N, Miyatake K, Uchida H, Watanabe M (2007) Distribution profile of water and supression of methanol crossover in sulfonated polyimide electrolyte membrane for direct methanol fuel cells. Electrochim Acta 52:5272–5280Google Scholar
  456. 456.
    Zhai F, Guo X, Fang J, Xu H (2007) Synthesis and properties of novel sulfonated polyimide membranes for direct methanol fuel cell application. J Membr Sci 296:102–109Google Scholar
  457. 457.
    Hu Z, Ogou T, Yoshino M, Yamada O, Kita H, Okamoto KI (2009) Direct methanol fuel cell performance of sulfonated polymide membranes. J Power Sources 194:674–682Google Scholar
  458. 458.
    Park HB, Lee CH, Sohn JY, Lee YM, Freeman BD, Kim HJ (2006) Effect of crosslinked chain lenght in sulfonated polyimide membranes on water sorption, proton conduction, and methanol permeation properties. J Membr Sci 285:423–443Google Scholar
  459. 459.
    Munukata H, Yamamoto D, Kanamura K (2008) Three-dimensionally ordered macroporous polyimide composite membrane with controlled pore size for direct methanol fuel cells. J Power Sources 178:596–602Google Scholar
  460. 460.
    Alcaide F, Alvarez G, Ganborena L, Iruin JJ, Miguel O, Blazquez JA (2009) Proton-conducting membranes from phosphotungstic acid-doped sulfonated polyimide for direct methanol fuel cell applications. Polym Bull 62:813–827Google Scholar
  461. 461.
    Nguyen T, Wang X (2010) Multifunctional composite membranes based on a highly porous polyimide matrix for direct methanol fuel cells. J Power Sources 195:1024–1030Google Scholar
  462. 462.
    Sung KA, Cho KY, Kim WK, Park JK (2010) Sulfonated polyimide coated with crosslinkable layer for direct methanol fuel cell. Electrochim Acta 55:995–1000Google Scholar
  463. 463.
    Liu D, Geng L, Fu Y, Dai X, Lü C (2011) Novel nanocomposite membranes based on sulfonated mesoporous silica nanoparticles modified sulfonated polyimides for direct methanol fuel cells. J Membr Sci 366:251–257Google Scholar
  464. 464.
    Geng L, He Y, Liu D, Dai X, Lü C (2012) Facile in situ template synthesis of sulfonated polyimide/mesoporous silica hybrid proton exchange membrane for direct methanol fuel cells. Micropor Mesopor Mat 148:8–14Google Scholar
  465. 465.
    Kim YS, Sumner MJ, Harrison WL, Riffle JS, McGrath JE, Pivovar BS (2004) Direct methanol fuel cell performance of disulfonated poly(arylene ether benzonitrile) copolymers. J Electrochem Soc 151:A2150–A2156Google Scholar
  466. 466.
    Lee CH, Min KA, Park HB, Hong YT, Jung BO, Lee YM (2007) Sulfonated poly(arylene ether sulfone)-silica nanocomposite membrane for direct methanol fuel cell (DMFC). J Membr Sci 303:258–266Google Scholar
  467. 467.
    Kim DH, Kim SC (2008) Transport properties of polymer blend membranes of sulfonated and nonsulfonated polysulfones for direct methanol fuel cell application. Macromol Res 16:457–466Google Scholar
  468. 468.
    Lee CH, Lee SY, Lee YM, Lee SY, Rhim JW, Lane O, McGrath JE (2009) Surface-fluorinated proton exchange membrane with high electrochemical durability for direct methanol fuel cells. ACS Appl Mater Interface 1:1113–1121Google Scholar
  469. 469.
    Kim HK, Kim DH, Choi J, Kim SC (2010) Compositional effect on the properties of sulfonated and nonsulfonated polymer blends for direct methanol fuel cell. Macromol Res 19:928–942Google Scholar
  470. 470.
    Oh SY, Park JY, Yu DM, Hong SK, Hong YT (2012) Preparation and characterization of acid-acid blend membranes for direct methanol fuel cell applications. Macromol Res 20:121–127Google Scholar
  471. 471.
    Joo SH, Pak C, Kim EA, Lee YH, Chang H, Seung D, Choi YS, Park JB, Kim TK (2008) Functionalized carbon nanotube-poly(arylene sulfone) composite membranes for direct methanol fuel cells with enhanced performance. J Power Sources 180:63–70Google Scholar
  472. 472.
    Gil SC, Kim JC, Ahn D, Jang JS, Kim H, Jung JC, Lim S, Jung DH, Lee W (2012) Thermally crosslinked sulfonated polyethersulfone proton exchange membranes for direct methanol fuel cells. J Membr Sci 417–418:2–9Google Scholar
  473. 473.
    Li L, Wang Y (2005) Sulfonated polyethersulfone Cardo membranes for direct methanol fuel cell. J Membr Sci 246:167–172Google Scholar
  474. 474.
    Lufrano F, Baglio V, Staiti P, Aricó AS, Antonucci V (2006) Development and characterization of sulfonated polysulfone membranes for direct methanol fuel cells. Desalination 199:283–285Google Scholar
  475. 475.
    Norris BC, Li W, Lee E, Manthiram A, Bielawski CW (2010) Click-functonalization of poly(sulfone)s and a study of their utilities as proton conductive membranes in direct methanol fuel cells. Polymer 51:5352–5358Google Scholar
  476. 476.
    Li W, Manthiram A (2010) Sulfonated poly(arylene ether sulfone) as a methanol-barrier layer in multilayer membranes for direct methanol fuel cells. J Power Sources 195:962–968Google Scholar
  477. 477.
    Kim DS, Shin KH, Park HB, Lee YM (2004) Preparation and characterization of sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK)/silica hybrid membranes for direct methanol fuel cell applications. Macromol Res 12:413–421Google Scholar
  478. 478.
    Park HB, Shin HS, Lee YM, Rhim JW (2005) Annealing effect of sulfonated polysulfone ionomer membranes on proton conductivity and methanol transport. J Membr Sci 247:103–110Google Scholar
  479. 479.
    Fu YZ, Manthiram A (2006) Synthesis and characterization of sulfonated polysulfone membranes for direct methanol fuel cells. J Power Sources 157:222–225Google Scholar
  480. 480.
    Fu Y, Li W, Manthiram A (2008) Sulfonated polysulfone with 1,3-1H-dibenzimidazole-benzene additive as a membrane for direct methanol fuel cells. J Membr Sci 310:262–267Google Scholar
  481. 481.
    Lufrano F, Baglio V, Staiti P, Stassi A, Aricó AS, Antonucci V (2010) Investigation of sulfonated polysulfone membranes as electrolyte in a passive-mode direct methanol fuel cell ministack. J Power Sources 195:7727–7733Google Scholar
  482. 482.
    Roh SC, Hong JH, Kim CK (2012) Polymer electrolyte membranes fabricated from poly(ethylene glycol dimethylmethacrylate-co-styrene sulfonic acid) copolymers for direct methanol fuel cell application. Marcromol Res 20:197–204Google Scholar
  483. 483.
    Kim S, Lee H, Ahn D, Park HW, Chang T, Lee W (2013) Direct sulfonation and photocrosslinking of unsaturated poly(styrene-b-butadiene-b-styrene) for proton exchange membrane of direct methanol fuel cell. J Membr Sci 427:85–91Google Scholar
  484. 484.
    Wei Z, He S, Liu X, Qiao J, Lin J, Zhang L (2013) A novel environment-friendly route to prepare proton exchange membranes for direct methanol fuel cells. Polymer 54:1243–1250Google Scholar
  485. 485.
    Kumar GG, Kim AR, Nahm KS, Yoo DJ (2011) High proton conductivity and low crossover of polyvinylidene fluoride-hexafluoro propylene-silica sulphuric acid composite membranes for direct methanol fuel cells. Curr Appl Phys 11:896–902Google Scholar
  486. 486.
    Surya Prakash GK, Smart MC, Wang QJ, Atti A, Pleynet V, Yang B, McGrath K, Olah GA, Narayanan SR, Chun W, Valdez T, Surampudi S (2004) High efficiency direct methanol fuel cell based on poly(styrenesulfonic) acid (PSSA) – poly(vinylidene fluoride) (PVDF) composite membranes. J Fluorine Chem 125:1217–1230Google Scholar
  487. 487.
    Nasef M, Zubir NA, Ismail AF, Khayet M (2006) Sulfonated radiation grafted polystyrene pore-filled poly(vinylidene fluoride) membranes for direct methanol fuel cells: structure–property correlations. Desalination 200:642–644Google Scholar
  488. 488.
    Byun J, Sauk J, Kim H (2009) Preparation of PVdF/PSSA composite membranes using supercritical carbon dioxide for direct methanol fuel cells. Int J Hydrogen Energ 34:6437–6442Google Scholar
  489. 489.
    Shen J, Xi J, Zhu W, Chen L, Qiu X (2006) A nanocomposite proton exchange membrane based on PVDF, poly(2-acrylamido-2-methyl propylene sulfonic acid), and nano-Al2O3 for direct methanol fuel cells. J Power Sources 159:894–899Google Scholar
  490. 490.
    Kumar GG, Shin J, Nho YC, Hwang IS, Fei G, Kim AR, Nahm KS (2010) Irradiated PVdF-HFP-tin oxide composite membranes for the applications of direct methanol fuel cells. J Membr Sci 350:92–100Google Scholar
  491. 491.
    Bhavani P, Sangeetha D (2012) Blend membranes for direct methanol and proton exchange membrane fuel cells. Chinese J Polym Sci 30:548–560Google Scholar
  492. 492.
    Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: a review. J Membr Sci 377:1–35Google Scholar
  493. 493.
    Leykin AY, Ahkrebko OA, Tarasevich MR (2009) Ethanol crossover through alkali-doped polybenzoimidazole membrane. J Membr Sci 328:86–89Google Scholar
  494. 494.
    Yameen B, Kaltbeitzel A, Langer A, Müller F, Gösele U, Knoll W, Azzaroni O (2009) Highly proton-conducting self-humidifying microchannels generated by copolymer brushes on a scaffold. Angew Chem Int Ed 48:3124–3228Google Scholar
  495. 495.
    Ashcraft JN, Avni A, Argun AA, Hammond PT (2010) Structure–property studies of highly conductive layer-by-layer assembled membranes for fuel cell PEM applications. J Mater Chem 20:6250–6257Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Departamento de Física de la Materia CondensadaCentro Atómico Constituyentes, CNEA, and INQUIMAE (Universidad de Buenos Aires – CONICET)Buenos AiresArgentina

Personalised recommendations