Advertisement

New Directions for Nature of Science Research

  • Gürol IrzikEmail author
  • Robert Nola
Chapter

Abstract

The idea of family resemblance, when applied to science, can provide a powerful account of the nature of science (NOS). In this chapter we develop such an account by taking into consideration the consensus on NOS that emerged in the science education literature in the last decade or so. According to the family resemblance approach, the nature of science can be systematically and comprehensively characterised in terms of a number of science categories which exhibit strong similarities and overlaps amongst diverse scientific disciplines. We then discuss the virtues of this approach and make some suggestions as to how one can go about teaching it in the classroom.

Keywords

Science Education Scientific Knowledge Scientific Discipline Ethical Norm Family Resemblance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abd-El-Khalick, F. (2004). ‘Over and over and over again: College Students’ Views of Nature of Science’. In: L. B. Flick & N. G. Lederman (eds.) Scientific Inquiry and Nature of Science. Dordrecht: Kluwer Academic Publishers, pp 389–426Google Scholar
  2. Abd-El-Khalick, F., & Lederman, N. G. (2000). ‘Improving science teachers’ conceptions of the nature of science: A critical review of the literature’. International Journal of Science Education 22: 665–701.CrossRefGoogle Scholar
  3. Aikenhead, G. S. (1985a). ‘Training teachers for STS education’. In: R. James (ed.) Science, Technology and Society: Resources for Science Educators. The Association for the Education of Teachers in Science 1985 Yearbook. Cookeville, Tennessee: Tennessee Technological University.Google Scholar
  4. Aikenhead, G. S. (1985b). ‘Science curricula and preparation for social responsibility’. In: R. Bybee (ed.) Science, Technology, Society. The National Science Teachers Association 1985 Yearbook, Washington, D.C.: NSTA.Google Scholar
  5. Allchin, D. (2011). ‘Evaluating Knowledge of the Nature of (Whole) Science’. Science Education 95: 518–542.CrossRefGoogle Scholar
  6. Alters, B. J. (1997). ‘Whose nature of science?’ Journal of Research in Science Teaching 34: 39–55.CrossRefGoogle Scholar
  7. American Association for the Advancement of Science (AAAS) (1990). Science for all Americans. New York: Oxford University Press.Google Scholar
  8. American Association for the Advancement of Science (AAAS) (1993). Benchmarks for science literacy. New York: Oxford University Press.Google Scholar
  9. Bell, R. (2004). ‘Perusing Pandora’s box: exploring the what, when, and how of nature of science’. In: L. B. Flick & N. G. Lederman (eds.) Scientific Inquiry and Nature of Science, Dordrecht: Kluwer Academic Publishers, pp 427–446.Google Scholar
  10. Cobern, W. & Loving, C. (2001). ‘Defining “Science” in a multicultural world: Implications for Science Education’, Science Education 85: 50–67.CrossRefGoogle Scholar
  11. Council of Ministers of Education, Canada (1997). Common framework of science learning outcomes. Toronto, Canada: CMEC Secretariat.Google Scholar
  12. Deng, F. (2011). ‘Students’ views of the nature of science: a critical review of research’, Science Education 95: 961–999.CrossRefGoogle Scholar
  13. Driver, R., Leach, J., Miller, A. & Scott, P. (1996). Young people’s images of science, Buckingham, England: Open University Press.Google Scholar
  14. Dupre, J. (1993). The Disorder of Things. Cambridge, Mass.: Harvard University Press.Google Scholar
  15. Duschl, R. A. & Osborne, J. (2002). ‘Supporting and promoting argumentation discourse in science education’. Studies in Science Education 38: 39–72.CrossRefGoogle Scholar
  16. Eflin, J. T., Glennan, S. & Reisch, G. (1999). ‘The Nature of Science: A Perspective from the Philosophy of Science’. Journal of Research in Science Teaching 36: 107–116.CrossRefGoogle Scholar
  17. Elby, A. & Hammer, D. (2001). ‘On the substance of a sophisticated epistemology’. Science Education 85: 554–567.CrossRefGoogle Scholar
  18. Ford, M. J. & Wargo, B. M. (2007). Routines, roles, and responsibilities for aligning scientific and classroom practices’. Science Education 91: 133–157.CrossRefGoogle Scholar
  19. Godfrey-Smith, P. (2003). Theory and Reality. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  20. Grandy, R. E. & Duschl, R. A. (2007). ‘Reconsidering the character and the role of inquiry in school science: analysis of a conference’. Science & Education 16: 141–166.CrossRefGoogle Scholar
  21. Hacking, I. (1996). ‘The Disunities of the Sciences’. In: P. Galison & D. Stump (eds.) The Disunity of Science. Stanford: Stanford University Press, pp 37–74.Google Scholar
  22. Hempel, C. G. (1965). Aspects of Scientific Explanation and Other Essays in the Philosophy of Science, New York: Free Press.Google Scholar
  23. Irzik, G. & Nola, R. (2011). ‘A Family Resemblance Approach to the Nature of Science for Science Education’, Science & Education 20: 567–607.CrossRefGoogle Scholar
  24. Khishfe, R. & Lederman, N. G. (2006). ‘Teaching Nature of Science within a Controversial Topic: Integrated versus Nonintegrated’. Journal of Research in Science Teaching 43: 395–418.CrossRefGoogle Scholar
  25. Kitcher, P. (2011). Science in a Democratic Society, New York: Prometheus Books.Google Scholar
  26. Kolsto, S. D. (2001). ‘Scientific literacy for citizenship: tools for dealing with the science dimension of socio-scientific issues’. Science Education 85: 291–310.CrossRefGoogle Scholar
  27. Kuhn, T. S. (1977). ‘Objectivity, Value Judgment, and Theory Choice’. In: The Essential Tension. Chicago: University of Chicago Press, pp 320–339.Google Scholar
  28. Laudan, L., Donovan, A., Laudan, R., Barker, P., Brown, H., Leplin, J., Thagard, P., & Wykstra, S. (1986). ‘Scientific change: Philosophical models and historical research’. Synthese 69: 141–223.CrossRefGoogle Scholar
  29. Laudan, L. (1996). Beyond Positivism and Relativism: Theory, Method and Evidence. Boulder: Westview.Google Scholar
  30. Lederman, N. G. (2007). ‘Nature of science: Past, present, and future’. In: S. K. Abell & N. G. Lederman (eds.) Handbook of research on science education. Mahwah, NJ: Erlbaum, pp 831–879.Google Scholar
  31. Lederman, N. G. (2004). ‘Syntax of nature of science within inquiry and science instruction’. In: L. B. Flick & N. G. Lederman (eds.) Scientific Inquiry and Nature of Science. Dordrecht: Kluwer Academic Publishers, pp ix-xviii.Google Scholar
  32. Lindberg, D. (1992). The Beginnings of Western Science. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  33. Longino, H. (1990). Science as Social Knowledge. Princeton: Princeton University Press.Google Scholar
  34. Matthews, M. R. (1998a). ‘The nature of science and science teaching’. In: B. Fraser & K. Tobin (eds) International Handbook of Science Education. Dordrecht: Springer, pp 981–999.CrossRefGoogle Scholar
  35. Matthews, M. R. (2011). ‘Changing the focus: from nature of science (NOS) to features of science (FOS)’. In: M. S. Khine (ed.) Advances in Nature of Science Research, Dordrecht: Springer, pp 3–26.Google Scholar
  36. McComas, W. F., Clough, M. P. & Almazroa, H. (1998). ‘The role and character of the nature of science in science education’. In: W. F. McComas (ed.) The Nature of Science in Science Education: Rationales and Strategies. Hingham: Kluwer Academic Publishers, pp 3–40.Google Scholar
  37. McComas, W. F. & Olson, J. K. (1998). ‘The nature of science in international science education standards documents’. In: W. F. McComas (ed.) The Nature of Science in Science Education: Rationales and Strategies. Hingham: Kluwer, pp 41–52.Google Scholar
  38. McGinn, M. K. & Roth, W. M. (1999). ‘Preparing students for competent scientific practice: Implications of recent research in science and technology studies.’ Educational Researcher 28: 14–24.CrossRefGoogle Scholar
  39. Merton, R. (1973). The Sociology of Science: Theoretical and Empirical Investigations, Chicago: Chicago University Press.Google Scholar
  40. National Curriculum Council (1988). Science in the National Curriculum. York, UK: NCC.Google Scholar
  41. National Research Council (1996) National Science Education Standards. Washington, DC: National Academic Press.Google Scholar
  42. Nola, R. & Irzık, G. (2005). Philosophy, Science, Education and Culture, Dordrecht: Springer.Google Scholar
  43. Nola, R. & Sankey, H. (2007). Theories of Scientific Method. Stocksfield: Acumen.Google Scholar
  44. Osborne, J. (2007). Science education for the twenty-first century. Eurasian Journal of Mathematics, Science and Technology Education, 3: 173–184.Google Scholar
  45. Osborne, J., Collins, S., Ratcliffe, M., Millar, R. & Duschl, R. (2003). ‘What “Ideas-about-Science” Should Be Taught in School Science? A Delphi Study of the Expert Community’. Journal of Research in Science Education 40: 692–720.Google Scholar
  46. Osborne, J., Ratcliffe, M., Collins, S., Millar, R. & Duschl, R. (2001). What Should we teach about science? A Delphi Study. London: King’s College.Google Scholar
  47. Pennock, R. T. (2011). ‘Can’t philosophers tell the difference between science and religion? Demarcation revisited’. Synthese 178: 177–206.CrossRefGoogle Scholar
  48. Popper, K, R. (1959). The Logic of Scientific Discovery. London: Hutchinson.Google Scholar
  49. Popper, K. R. (1963). Conjectures and Refutations. London: Routledge and Kegan Paul.Google Scholar
  50. Popper, K. R. (1975). Objective Knowledge. Oxford: Clarendon Press.Google Scholar
  51. Radder, H. (2010). ‘The commodification of academic research’. In: H. Radder (ed) The Commodification of Academic Research. Pittsburgh: University of Pittsburgh Press, pp 1–23.Google Scholar
  52. Resnik, D. (2007). The Price of Truth. New York: Oxford.CrossRefGoogle Scholar
  53. Rocard, M. et al. (2007). Science education now: a renewed pedagogy for the future of Europe. EU report Rocard on science education_en.pdf. Retrieved 31 January 2011.Google Scholar
  54. Rorty, R. (1991). Objectivity, Relativism and Truth: Philosophical Papers Volume 1, Cambridge: Cambridge University Press.Google Scholar
  55. Rosenberg, A. (2008). ‘Biology’. In: S. Psillos & M. Curd (eds) The Routledge Companion to Philosophy of Science. London: Routledge, pp 511–519.Google Scholar
  56. Rudolph, J. L. (2000). ‘Reconsidering the ‘nature of science’ as a curriculum component’. Journal of Curriculum Studies 32: 403–419.CrossRefGoogle Scholar
  57. Rutherford, J. F. & Ahlgren, A. (1990). Science for all Americans. New York: Oxford University Press.Google Scholar
  58. Sadler, T. D. (2011). Socio-scientific Issues in the Classroom. Dordrecht: Springer.Google Scholar
  59. Samarapungavan, A., Westby, E. L., & Bodner, G. M. (2006). ‘Contextual Epistemic Development in Science: A Comparison of Chemistry Students and Research Chemists’. Science Education 90: 468–495.CrossRefGoogle Scholar
  60. Searle, J. (1995). The Construction of Social Reality. London: Allen Lane Penguin Press.Google Scholar
  61. Sismondo, S. (2004). An Introduction to Science and Technology Studies. Oxford: Blackwell.Google Scholar
  62. Smith, M. U. & Scharmann, L. C. (1999). ‘Defining versus describing the nature of science: a pragmatic analysis for classroom teachers and science educators’. Science Education 83: 493–509.CrossRefGoogle Scholar
  63. Stanley, W. B. & Brickhouse, N. W. (2001). ‘Teaching science: The multicultural question revisited’, Science Education 85: 35–49.CrossRefGoogle Scholar
  64. van Fraassen, B. (1980). The Scientific Image. Oxford: Clarendon Press.CrossRefGoogle Scholar
  65. von Glasersfeld, E (1989). ‘Cognition, Construction of Knowledge and Teaching’. Synthese 80: 121–40.CrossRefGoogle Scholar
  66. Weinstein, M. (2008). ‘Finding science in the school body: Reflections on transgressing the boundaries of science education and the social studies of science’. Science Education 92: 389–403.CrossRefGoogle Scholar
  67. Wittgenstein, L. (1958). Philosophical Investigations. Oxford: Blackwell.Google Scholar
  68. Wong, S. L. & Hodson, D. (2009). ‘From horse’s mouth: What scientists say about scientific investigation and scientific knowledge’. Science Education 93: 109–130.CrossRefGoogle Scholar
  69. Wong, S. L., Hodson, D., Kwan, J., & Yung, B. H. W. (2009). Turning crisis into opportunity: Nature of science and scientific inquiry as illustrated in the scientific research on severe acute respiratory syndrome. Science & Education 18: 95–118.CrossRefGoogle Scholar
  70. Wong, S. L. & Hodson, D. (2010). ‘More from horse’s mouth: What scientists about science as a social practice’. International Journal of Science Education 32: 1432–1463.CrossRefGoogle Scholar
  71. Zeidler, D. N., Walker, K. A. & Ackett, W. A. (2002). ‘Tangled up in views: beliefs in the nature of science and responses to socio-scientific dilemmas’. Science Education 86: 343–367.CrossRefGoogle Scholar
  72. Zemplen, G. A. (2009). ‘Putting sociology first–Reconsidering the role of the social in nature of science’. Science & Education 18: 525–560.CrossRefGoogle Scholar
  73. Ziman, J. (2000). Real Science: What it is and What it Means. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Sabancı UniversityIstanbulTurkey
  2. 2.The University of AucklandAucklandNew Zealand

Personalised recommendations