Crustal Evolution and Deformation in a Non-Plate-Tectonic Archaean Earth: Comparisons with Venus

  • Lyal B HarrisEmail author
  • Jean H Bédard
Part of the Modern Approaches in Solid Earth Sciences book series (MASE, volume 7)


Evidence for modern plate tectonics in the Archaean is equivocal to absent, and alternative environments for formation and deformation of greenstone sequences are summarized. We focus on proposals for an unstable stagnant lid basaltic plateau crust, with cratonization occurring initially above major mantle plumes. Archaean continental drift initiated as a result of mantle traction forces acting on newly-formed subcontinental mantle keels, with further cratonic growth occurring as a result of terrane accretion to the leading edges of the migrating cratonic nuclei.

Venus is presented as an analogue for a non-plate-tectonic Archaean Earth. Despite the absence of evidence for characteristic plate tectonic environments on Venus (i.e. subduction = trenches and volcanic arcs; seafloor-spreading = volcanic ridges and transforms), the form, scale, and geometry of folds, brittle-ductile shear zones, and faults interpreted on the surface of Venus from radar imagery are comparable to mid-upper crustal structures on Earth. Anastomosing rifts link coronae interpreted to form above upwelling mantle plumes. The Lakshmi Planum highland plateau in the western Ishtar Terra region of Venus lacks extensive, regional-scale internal deformation structures, but a fold-thrust belt produced mountains on its northern margin, folds and sinistral strike-slip faults occur on its NW margin, and both regional dextral and sinistral strike slip belts occur in a zone of lateral escape to its NE. Rift zones are present along the southern margin to Lakshmi Planum. The scale and kinematics of structures in western Ishtar Terra closely resemble those of the Indian-Asia collision zone, and we propose that lateral displacement of some coronae and ‘craton-like’ highlands or plana result from mantle tractions at their base in a stagnant lid convection regime, i.e. a similar regime as interpreted to have preceded development of plate tectonics on Earth.

In the Wawa-Abitibi Subprovince of the Superior Craton in Canada, the formation of granite greenstone sequences in a plume-related volcanic plateau and subsequent deformation can be generated through geodynamic processes similar to those on Venus without having to invoke modern-style plate tectonics. 3D S-wave seismic tomographic images of the Superior Province reveal a symmetrical rift in the sub-continental lithospheric mantle (SCLM) beneath the Wawa-Abitibi Subprovince, with no evidence for ‘fossil’ subduction zones. Major gold deposits and kimberlites are located above rift-bounding faults in the SCLM. Early rift structures localized subsequent deformation and hydrothermal fluid flow during N-S shortening and lateral escape ahead of a southwardly moving indenter (the Northern Superior Craton—Hudson’s Bay terrane) in the ca. 2696 Ma Shebandowanian orogeny. The geometry of reverse and strike-slip shear zones in the Abitibi Subprovince of the SE Superior Province is similar to that of shear zones developed in western Ishtar Terra, Venus, which also formed ahead of a rigid indenter whose displacement is attributed to mantle tractions. Similarly, shortening and rift inversion in the Abitibi is ascribed to cratonic mobilism where displacement of the N Superior Province ‘proto-craton’ resulted from mantle flow acting upon its deep lithospheric keel. Deformation in other Archaean cratons previously interpreted in terms of plate tectonics may also be the result of similar, mantle-driven processes.


Archaean tectonics Mantle plumes Crustal evolution Mantle flow Cratonic mobilism Venus Ishtar Terra Lakshmi Planum Superior Craton Abitibi Aeromagnetics Gravity Seismic tomography 



NASA Venus radar imagery was provided by the U.S. Geological Survey Astrogeology Science Center and the Jet Propulsion Laboratory at the California Institute of Technology. Stéphanie Godey is thanked for making available online her seismic tomographic database for North America. Geophysical data were processed using Geosoft’s Oasis Montaj™ software and software developed and kindly provided by Pierre Keating (GSC), who also provided the detailed GSC aeromagnetic grid for the central Québec Abitibi enhanced by LH. Our ideas for the Abitibi benefited from previous studies (too numerous to cite all) and discussions with colleagues, notably Phil Thurston, who is also thanked for providing the Abitibi geological map, François Leclerc, Patrick Lengyel, and Sandrine Cadéron (who sadly passed away before publishing her research on Archaean tectonics adjacent to the Grenville Front). Initial gravity interpretations in the central Abitibi were undertaken by Noémie Fayol. LH acknowledges NSERC for funding of early stages of this research through a Discovery Grant, Laurentian Goldfields for funding initial research in the SE Superior Craton and NW Grenville Province, and the CFI, MELS-Québec, INRS-ETE, and Sun Microsystems for funding computing facilities and software used for processing of geophysical data. Yildirim Dilek, Benoît Dubé, Michel Jébrak, and Jean Goutier are thanked for their comments on an earlier draft. This is NRCAN/ESS/GSC contribution number 20120436.


  1. Abbott DH, Drury R, Mooney WD (1997) Continents as lithological icebergs: The importance of buoyant lithospheric roots. Earth Planet Sci Lett 149:15–27Google Scholar
  2. Abbott DH, Isley AE (2002) Extraterrestrial influences on mantle plume activity. Earth Planet Sci Lett 205:53–62Google Scholar
  3. Aktas K, Eaton DW (2006) Upper-mantle velocity structure of the lower Great Lakes region. Tectonophysics 420:267–281Google Scholar
  4. Allard GO (1976) Doré Lake Complex and its importance to Chibougamau geology and metallogeny. Ministère des Richesses naturelles du Québec Report DP-368, 484 ppGoogle Scholar
  5. Alvarez W (2010) Protracted continental collisions argue for continental plates driven by basal traction. Earth Planet Sci Lett 296:434–442Google Scholar
  6. Amos J (2009) Probe hints at past Venus ocean. BBC News. Accessed 3 Feb 2013
  7. Anderson DL (1981) Plate tectonics on Venus. J Geophys Res 8:309–311Google Scholar
  8. Anhaeusser CR, Mason R, Viljoen MJ, Viljoen RP (1969) Reappraisal of some aspects of Precambrian shield geology. Geol Soc Am Bull 80:2175–2200Google Scholar
  9. Anhaeusser CR, Stettler E, Gibson RI, Cooper GRJ (2010) A possible Mesoarchaean impact structure at Setlagole, North West Province, South Africa: aeromagnetic and field evidence. S Afr J Geol 113:413–436Google Scholar
  10. Annen C (2011) Implications of incremental emplacement of magma bodies for magma differentiation, thermal aureole dimensions and plutonism-volcanism relationships. Tectonophysics 500:3–10Google Scholar
  11. Ansan V, Vergely P (1995) Evidence of vertical and horizontal motions on Venus: Maxwell Montes. Earth Moon Planets 69:285–310Google Scholar
  12. Ansan V, Vergely P, Masson P (1996) Model of formation of Ishtar Terra, Venus. Planet Space Sci 44:817–831Google Scholar
  13. Armann M, Tackley PJ (2012) Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: two-dimensional models. J Geophys Res 117:E12003. doi:10.1029/2012JE00423Google Scholar
  14. Arndt N (2003) Komatiites, kimberlites, and boninites. J Geophys Res Solid Earth 108[B6]. doi:10.1029/2002JB002157Google Scholar
  15. Arndt NT, Lewin É, Albarède F (2002) Strange partners: formation and survival of continental crust and lithospheric mantle. In: Fowler CMR, Ebinger CJ, Hawkesworth CJ (eds) The early Earth: physical, chemical and biological development. Spec Publ, Geol Soc London, 199:91–103Google Scholar
  16. Arth JG, Barker F, Peterman ZE, Frideman I (1978) Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of southwest Finland and its implications for the origin of tonalitic and trondhjemitic magmas. J Petrol 19:289–316Google Scholar
  17. Atherton MP, Petford N (1996) Plutonism and the growth of Andean crust at 9°S from 100 to 3 Ma. J S Am Earth Sci 9:1–9Google Scholar
  18. Ayer J, Amelin Y, Corfu F, Kamo S, Ketchum J, Kwok K, Trowell N (2002) Evolution of the southern Abitibi greenstone belt based on U-Pb geochronology: autochthonous volcanic construction followed by plutonism, regional deformation and sedimentation. Precamb Res 115:63–95Google Scholar
  19. Ayres LD, Thurston PC (1985) Archean supracrustal sequences in the Canadian Shield: an overview. In: Ayres LD, Thurston PC, Card KD, Weber W (eds) Evolution of Archean Supracrustal Sequences. Geol Assoc Can Spec paper 28:343–380Google Scholar
  20. Bailey RC (1999) Gravity-driven continental overflow and Archaean tectonics. Nature 398:413–415Google Scholar
  21. Baker VR (2013) Terrestrial analogs, planetary geology, and the nature of geological reasoning. Planet Space Sci (in press). doi:10.1016/j.pss.2012.10.008Google Scholar
  22. Bannister RA, Hansen VL (2010) Geologic map of the Artemis Chasma quadrangle (V-48) Venus: U.S. Geological Survey Scientific Investigations Map 3099. (map) and Accessed 19 July 2012
  23. Barker F, Arth JG (1976) Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology 4:596–600Google Scholar
  24. Barley ME, Krapež B, Groves DI, Kerrich R (1998) The Late Archaean bonanza: metallogenic and environmental consequences of the interaction between mantle plumes, lithospheric tectonics and global cyclicity. Precamb Res 91:65–90Google Scholar
  25. Barley ME, Kerrich R, Reudavy I, Xie Q (2000) Late Archaean Ti-rich, Al-depleted komatiites and komatiitic volcaniclastic rocks from the Murchison Terrane in Western Australia. Aust J Earth Sci 47:873–883Google Scholar
  26. Barsukov VL et al (1986) The geology and geomorphology of the Venus surface as revealed by the radar images obtained by Veneras 15 and 16. J Geophys Res 91D (supplement):378–398Google Scholar
  27. Basilevsky AT, Head JW (2003) The surface of Venus. Rep Prog Phys 66:1699–1734Google Scholar
  28. Becker TW, Faccenna C (2011) Mantle conveyor beneath the Tethyan collisional belt. Earth Planet Sci Lett 310:453–46Google Scholar
  29. Bédard JH (1985) The opening of the Atlantic, the Mesozoic New England igneous province, and mechanisms of continental breakup. Tectonophysics 113:209–232Google Scholar
  30. Bédard JH (2001) Parental magmas of the Nain Plutonic Suite anorthosites and mafic cumulates: a trace element modelling approach. Contrib Mineral Petrol 141:747–771Google Scholar
  31. Bédard JH (2006) A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim Cosmochim Acta 70:1188–1214Google Scholar
  32. Bédard JH (2010) Parental magmas of Grenville Province massif-type anorthosites, and conjectures about why massif anorthosites are restricted to the Proterozoic. Earth Environ Sci Trans R Soc Edin 100:77–103Google Scholar
  33. Bédard JH (2013) How many arcs can dance on the head of a plume? A ‘Comment’ on: a critical assessment of Neoarchean ‘plume only’ geodynamics: Evidence from the Superior province, by Derek Wyman, Precambrian Research, 2012. Precamb Res. 229, 189–197 doi:10.1016/j.precamres.2012.05.004Google Scholar
  34. Bédard JH, Brouillette P, Madore L, Berclaz A (2003) Archaean cratonization and deformation in the northern Superior Province, Canada: an evaluation of plate tectonic versus vertical tectonic models. Precamb Res 127:61–87Google Scholar
  35. Bédard JH, Harris LB, Thurston P (2013) The hunting of the snArc. Precamb Res 229: 20–48 Scholar
  36. Bédard JH, Leclerc F, Harris LB, Goulet N (2009) Intra-sill magmatic evolution in the Cummings Complex, Abitibi greenstone belt: Tholeiitic to calc-alkaline magmatism recorded in a subvolcanic conduit system. Lithos 111:47–71Google Scholar
  37. Bédard JH, Marsh BD, Hersum TG, Naslund HR, Mukasa SB (2007) Large-scale mechanical redistribution of orthopyroxene and plagioclase in the Basement Sill, Ferrar dolerites, Antarctica: Petrological, mineral-chemical and field evidence for channelized movement of crystals and melt. J Petrol 48:2289–2326Google Scholar
  38. Begg GC, Griffin WL, Natapov LM, O’Reilly SY, Grand SP, O’Neill CJ, Hronsky JMA, Djomani YP, Swain CJ, Deen T, Bowden P (2009) The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution. Geosphere 5:23–50Google Scholar
  39. Beintema KA, Mason PRD, Nelson DR, White SH, Wijbrans JR (2003) New constraints on the timing of tectonic events in the Archaean central Pilbara Craton, Western Australia. J Virtual Explorer 13, pp 21. Accessed 3 Feb 2013
  40. Benn K (2006) Tectonic delamination of the lower crust during Late Archean collision of the Abitibi-Opatica and Pontiac Terranes, Superior Province, Canada. In: Benn K, Mareschal J-C, Condie KC (eds) Archean Geodynamics and Environments, Geophysical Monograph Series 164:267–282Google Scholar
  41. Benn K, Moyen J-F (2008) The Late Archean Abitibi-Opatica terrane, Superior Province: A modified oceanic plateau. GSA Special Papers 440:173–197Google Scholar
  42. Benn KB, Sawyer EW, Bouchez J-L (1992) Orogen parallel and transverse shearing in the Opatica belt, Quebec: implications for the structure of the Abitibi Subprovince. Can J Earth Sci 29:2429–2444Google Scholar
  43. Bennett VC (2004) Compositional evolution of the mantle. Treatise on Geochemistry 4, chapter 13:493–519Google Scholar
  44. Berclaz A, Leclair A, Far NT (2004) Structural evolution of the Northeastern Superior Province (NESP) over 1 billion years, with emphasis on greenstone belts and their relation with enclosing granitoids. American Geophysical Union, Spring Meeting 2004, abstract #V31A–03Google Scholar
  45. Bézard B, Tsang CCC, Carlson RW, Piccioni G, Marcq E, Drossart P (2009) Water vapor abundance near the surface of Venus from Venus Express/VIRTIS observations. J Geophys Res 114:E00B39. doi:10.1029/2008JE003251Google Scholar
  46. Bhattacharji S, Koide H (1975) Mechanistic model for triple junction fracture geometry. Nature 255:21–24Google Scholar
  47. Bickle MJ (1978) Heat loss from the Earth: a constraint on Archaean tectonics from the relation between geothermal gradients and the rate of heat production. Earth Planet Sci Lett 40:301–315Google Scholar
  48. Bickle MJ (1986) Implications of melting for stabilization of the lithosphere and heat loss in the Archean Earth Planet. Sci Lett 80:314–324Google Scholar
  49. Bickle MJ, Bettenay LF, Chapman HJ, Groves DI, McNaughton NJ, Campbell IH, de Laeter JR (1989) The age and origin of younger granitic plutons of the Shaw batholith in the Archaean Pilbara Block, Western Australia. Contrib Mineral Petrol 101:361–376Google Scholar
  50. Bickle MJ, Nisbet EG, Martin A (1995) Archean greenstone belts are not oceanic crust. J Geol 102:121–138Google Scholar
  51. Biczok J, Hollings P, Klipfel P, Heaman L, Maas R, Hamilton M, Kamo S, Friedman R (2012) Geochronology of the North Caribou greenstone belt, Superior Province Canada: Implications for tectonic history and gold mineralization at the Musselwhite mine. Precamb Res 192–195:209–230Google Scholar
  52. Bierlein FP, Groves DI, Goldfarb RJ, Dubé B (2006) Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits. Miner Deposita 40:874–886Google Scholar
  53. Bilotti F, Suppe J (1999) The global distribution of wrinkle ridges on Venus. Icarus 139:37–157Google Scholar
  54. Bindschadler DL, Schubert G, Kaula WM (1992) Coldspots and hotspots: global tectonics and mantle dynamics of Venus. J Geophys Res 97:13495–13532Google Scholar
  55. Bleamaster LF, Hansen VL (2004) Effects of crustal heterogeneity on the morphology of chasmata, Venus. J Geophys Res 109: E02004. doi:10.1029/2003JE002193Google Scholar
  56. Bleeker W (2002) Archaean tectonics: a review, with illustrations from the Slave Craton. In: Fowler CMR, Ebinger CJ, Hawkesworth CJ (eds) The Early Earth: Physical, Chemical and Biological Development. Geol Soc London Spec Publ 199:151–181Google Scholar
  57. Bleeker W (2012) Targeted Geoscience Initiative 4. Lode gold deposits in ancient deformed and metamorphosed terranes: the role of extension in the formation of Timiskaming basins and large gold deposits, Abitibi Greenstone Belt—A discussion. Summary of Field Work and Other Activities 2012, Ontario Geological Survey. Open File Report 6280:47-1–47-12Google Scholar
  58. Bleeker W, Ernst R (2006) Short-lived mantle generated magmatic events and their dyke swarms: The key unlocking Earth’s paleogeographic record back to 2.6 Ga. In: Hanski E, Mertanen S, Rämö T, Vuollo J (eds) Dyke Swarms—time markers of crustal evolution. Taylor and Francis/Balkema, London, pp 3–26Google Scholar
  59. Bleeker W, Breemen O van, Berger B (2008). The Pipestone Thrust and the fundamental architecture of the south-central Abitibi greenstone belt, Superior craton, Canada. Quebec 2008 GAC-MAC-SEG-SGA Joint annual meeting, session SY8: Abitibi (Québec, May 27–30, 2008). Accessed 3 Feb 2013
  60. Blewett RS, Champion DC, Whitaker AJ, Bell B, Nicoll M, Goleby BR, Cassidy KF, Groenewald PB (2002) Three dimensional (3D) model of the Leonora-Laverton transect area: implications for Eastern Goldfields tectonics and mineralisation. In: Cassidy KF (ed) Geology, geochronology and geophysics of the north eastern Yilgarn Craton, with an emphasis on the Leonora-Laverton transect area. Geoscience Australia, Record 2002/18:83–100Google Scholar
  61. Blewett RS, Czarnota K, Henson PA (2010a) Structural-event framework for the eastern Yilgarn Craton, Western Australia, and its implications for orogenic gold. Precamb Res 183:203–229Google Scholar
  62. Blewett RS, Henson PA, Roy IG, Champion DC, Cassidy KF (2010b) Scale-integrated architecture of a world-class gold mineral system: the Archaean eastern Yilgarn Craton, Western Australia. Precamb Res 183:230–250Google Scholar
  63. Blichert-Toft J, Arndt NT, Gruau G (2004) Hf isotopic measurements on Barberton komatiites: effects of incomplete sample dissolution and importance for primary and secondary magmatic signatures. Chem Geol 207:261–275Google Scholar
  64. Boily M, Leclair A, Maurice C, Bédard JH, David J (2009) Paleo- to Mesoarchean basement recycling and terrane definition in the Northeastern Superior Province, Québec, Canada. Precamb Res 168:23–44Google Scholar
  65. Bonin B (2012) Extra-terrestrial igneous granites and related rocks: A review of their occurrence and petrogenesis. Lithos 153:3–24. doi: 10.1016/j.lithos.2012.04.007Google Scholar
  66. Bonin B, Bébien J, Masson P (2002) Granite: A planetary point of view. Gondwana Res 5:261–273Google Scholar
  67. Bowden P, Black R, Martin RF, Ike EC, Kinnaird JA, Batchelor RA (1987) Niger-Nigerian alkaline ring complexes: a classic example of African Phanerozoic anorogenic mid-plate magmatism. In: Fitton JG, Upton BGJ (eds) Alkaline Igneous Rocks. Geol Soc London Spec Pub 30:357–379Google Scholar
  68. Boyd FR (1998) The origin of cratonic peridotites: A major-element approach. Int Geol Rev 40:755–764Google Scholar
  69. Branney MJ, Bonnichsen B, Andrews GDM, Ellis B, Barry TL, McCurry M (2008) ‘Snake River (SR)-type’ volcanism at the Yellowstone hotspot track: distinctive products from unusual. high-temperature silicic super-eruptions. Bull Volcanol 70:293–314Google Scholar
  70. Brown CD, Grimm RE (1995) Tectonics of Artemis Chasma: a Venusian ’plate’ boundary. Icarus 117:219–249Google Scholar
  71. Brown CD, Grimm RE (1999) Recent tectonic and lithospheric thermal evolution of Venus. Icarus 139:40–48Google Scholar
  72. Brown CD, Phillips RJ (1999) Recent tectonic and lithospheric thermal evolution of Venus. Icarus 139:40–48Google Scholar
  73. Brown M (2007) Metamorphic conditions in orogenic belts: A record of secular change. Int Geol Rev 49:193–234Google Scholar
  74. Brown M (2009) Metamorphic patterns in orogenic systems and the geological record. In: Cawood PA, Kröner A (eds) Earth Accretionary Systems in Space and Time. Geol Soc London Special Pub 318:37–74Google Scholar
  75. Bruegge RWV, Head JW (1990) Orogeny and large-scale strike-slip faulting on Venus: Tectonic Evolution of Maxwell Montes. J Geophys Res 95:8357–8381Google Scholar
  76. Brun J-P, Tron V (1993) Development of the North Viking Graben; inferences from laboratory modelling. In: Cloetingh S, Sassi W, Horvath F, Puigdefabregas C (eds) Basin Analysis and Dynamics of Sedimentary Basin Evolution. Sediment Geol 86:31–51Google Scholar
  77. Buchan KL, Hamilton MA (2009). New geochronologic and paleomagnetic results for the Grenville Dyke Swarm and implications for the Ediacaran APWP for Laurentia. EOS 90, n. 22, Jt. Assem. Suppl., Abstract GA12A–04Google Scholar
  78. Bursnall JT, Leclair AD, Moser DE, Percival JA (1994) Structural correlation within the Kapuskasing uplift. Can J Earth Sci 31:1081–1095Google Scholar
  79. Burov EB (2010) The equivalent elastic thickness (Te), seismicity and the long-term rheology of continental lithosphere: Time to burn-out “crème brûlée”? Insights from large-scale geodynamic modeling. Tectonophysics 484:4–26Google Scholar
  80. Burov EB, Cloetingh S (2010) Plume-like upper mantle instabilities drive subduction initiation. Geohys Res Lett 37:L03309. doi:10.1029/2009GL041535Google Scholar
  81. Burov EB, Watts AB (2006) The long-term strength of continental lithosphere: “jelly sandwich” or “crème brûlée”? GSA Today 16:4–10Google Scholar
  82. Cadéron S (2003) Interpretation tectonometamorphique du nord de la province du Supérieur, Québec, Canada. PhD thesis, l’Université du Québec à Chicoutimi. Accessed 3 Feb 2013
  83. Cadéron S, Rivers T (2006) Inverted metamorphism at the eastern margin of the Superior Province: new insights on regional metamorphic overprinting along the Grenville Front in Québec, Canada. Abstract Volume, Montreal 2006, GAC-MAC: 22–23. Accessed 3 Feb 2013Google Scholar
  84. Cagnard F, Brun J-P, Gapais D (2006a) Modes of thickening of analogue weak lithospheres. Tectonophysics 421:145–160Google Scholar
  85. Cagnard F, Durrieu N, Gapais D, Brun J-P, Ehlers C (2006b) Crustal thickening and lateral flow during compression of hot lithospheres, with particular reference to Precambrian times. Terra Nova 18:72–78Google Scholar
  86. Calvert AJ, Ludden JN (1999) Archean continental assembly in the southeastern Superior Province of Canada. Tectonics 18:412–429Google Scholar
  87. Calvert AJ, Sawyer EW, Davis WJ, Ludden JN (1995) Archean subduction inferred from seismic images of a mantle suture in the Superior Province. Nature 375:670–674Google Scholar
  88. Camiré GE, Burg J-P (1993) Late Archaean thrusting in the northwestern Pontiac Subprovince, Canadian Shield. Precamb Res 61:51–66Google Scholar
  89. Camiré GE, Ludden JN, La Flèche MR, Burg J-P (1993) Mafic and ultramafic amphibolites from the northwestern Pontiac Subprovince: chemical characterization and implications for tectonic setting. Can J Earth Sci 30:1110–1122Google Scholar
  90. Campbell IH (2001) Identification of ancient mantle plumes. In: Ernst RE, Buchan KL (eds) Mantle Plumes: their identification through time. Geol Soc Am Spec paper 352:5–21Google Scholar
  91. Campbell IH, Griffiths RW, Hill RI (1989) Melting in an Archaean mantle plume: heads it’s basalts, tails it’s komatiites. Nature 339:697–699Google Scholar
  92. Campbell IH, Taylor SR (1983) No water, no granites—no oceans, no continents. J Geophys Res 10:1061–1064Google Scholar
  93. Canadian Aeromagnetic Data Base (2012) Abitibi, Quebec-Ontario Compilation. Geoscience Data Repository, Geological Survey of Canada, Earth Sciences Sector, Natural Resources Canada, Government of CanadaGoogle Scholar
  94. Canadian Geodetic Information System (2012) Geoscience Data Repository, Geodetic Survey Division, Earth Sciences Sector, Natural Resources Canada, Government of CanadaGoogle Scholar
  95. Canil D (2008) Canada’s craton: a bottoms-up view. GSA Today 18:4–10Google Scholar
  96. Card KD (1990) A review of the Superior Province of the Canadian Shield, a product of Archean accretion. Precamb Res 48:99–156Google Scholar
  97. Card KD (1991) General comparison of the Canadian and Baltic shields. In: Ojakangas RW (ed) Precambrian Geology Of The Southern Canadian Shield and the eastern Baltic Shield, Minnesota Geological Survey Information Circular 34, iv–vGoogle Scholar
  98. Card KD, Poulsen KH (1998) Geology and mineral deposits of the Superior Province of the Canadian Shield: Geology of the Precambrian Superior and Grenville Provinces and Precambrian Fossils in North America. In: Lucas, SB, St-Onge MR (eds) Geology of North America vol. 3-1, Geological Survey of Canada, Ottawa, pp. 13–204Google Scholar
  99. Carrier A, Jébrak M, Angelier J, Holyland P (2000) The Silidor deposit, Rouyn-Noranda District, Abitibi Belt: Geology, structural evolution, and paleostress modeling of an Au quartz vein-type deposit in an Archean trondhjemite. Econ Geol 95:1049–1055Google Scholar
  100. Cathey HE, Nash BP (2004) The Cougar Point Tuff: Implications for thermochemical zonation and longevity of high-temperature, large-volume silicic magmas of the Miocene Yellowstone hotspot. J Petrol 45:27–58Google Scholar
  101. Cawood PA, Kröner A, Pisarevsky S (2006) Precambrian plate tectonics: Criteria and evidence. GSA Today 16:4–11Google Scholar
  102. CBS News (2009) Venus probe images hint at ancient ocean. Quirks and Quarks Blog. Accessed 3 Feb 2013
  103. Champion DC, Sheraton JW (1997) Geochemistry and Nd isotope systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: Implications for crustal growth processes. Precamb Res 83:109–132Google Scholar
  104. Champion DC, Smithies RH (2007) Geochemistry of Paleoarchean granites of the East Pilbara Terrane, Pilbara Craton, Western Australia: Implications for early Archean crustal growth. In: Van Kranendonk M, Smithies RH, Bennett VC (eds) Earth’s Oldest rocks, Developments in Precambrian Geology. Elsevier, Amsterdam, pp 369–409Google Scholar
  105. Chappell BW, Stephens WE (1988) Origin of infracrustal (I-type) granite magmas. In: Brown PE, Chappel BW (eds) Second Hutton Symposium: The Origin of Granites and Related Rocks, Trans Royal Soc Edin Earth Sci 83:71–86Google Scholar
  106. Chardon D, Andronicos CL, Hollister LS (1999) Large-scale transpressive shear zone patterns and displacements within magmatic arcs: The coast plutonic complex, British Columbia. Tectonics 18:278–292Google Scholar
  107. Chardon D, Choukroune P, Jayananda M (1996) Strain patterns, décollement and incipient sagducted greenstone terrains in the Archaean Dharwar craton (south India). J Struct Geol 18:991–1004Google Scholar
  108. Chardon D, Choukroune P, Jayananda M (1998) Sinking of the Dharwar Basin (south India): implications for Archaean tectonics. Precamb Res 91:15–39Google Scholar
  109. Chardon D, Jayananda M, Chetty TRK, Peucat JJ (2008) Precambrian continental strain and shear zone patterns: South Indian case. J Geophys Res 113:B08402. Doi:10.1029/2007JB005299Google Scholar
  110. Chardon D, Jayananda M, Peucat JJ (2011) Lateral constrictional flow of hot orogenic crust: Insights from the Neoarchean of South India, geological and geophysical implications for orogenic plateaux. Geochem Geophys Geosyst 12. Doi:10.1029/2010GC003398Google Scholar
  111. Chardon D, Peucat JJ, Jayananda M, Choukroune P, Fanning CM (2002) Archean granite-greenstone tectonics at Kolar (South India): interplay of diapirism and bulk inhomogeneous contraction during juvenile magmatic accretion. Tectonics 21(3) art. 1016Google Scholar
  112. Chavagnac V (2004) A geochemical and Nd isotopic study of Barberton komatiites (South Africa): implication for the Archean mantle. Lithos 75:253–281Google Scholar
  113. Chen C-W, Li A (2012) Shear wave structure in the Grenville Province beneath the lower Great Lakes region from Rayleigh wave tomography. J Geophys Res 117: B01303. doi:10.1029/2011JB008536.Google Scholar
  114. Chetty TRK, Venkatrayudu M, Venkatasivappa V (2010) Structural architecture and a new tectonic perspective of Ovda Regio, Venus. Planet Space Sci 58:1286–1297Google Scholar
  115. Choukroune P, Bouhallier H, Arndt NT (1995) Soft lithosphere during periods of Archaean crustal growth or crustal reworking. Geol Soc London Spec Pubs 95:67–86Google Scholar
  116. Chown EH, Daigneault R, Mueller W, Mortensen JK (1992) Tectonic evolution of the Northern Volcanic Zone, Abitibi Belt, Quebec. Can J Earth Sci 29:2211–2225Google Scholar
  117. Chown EH, Harrap R, Moukhsil A (2002) The role of granitic intrusions in the evolution of the Abitibi belt, Canada. Precamb Res 115:291–310Google Scholar
  118. Clowes RM, White DJ, Hajnal Z (2010) Mantle heterogeneities and their significance: Results from Lithoprobe seismic reflection and refraction/wide-angle reflection studies. Can J Earth Sci 47:409–443Google Scholar
  119. Cobbold PR, Davy P (1988) Indentation tectonics in nature and experiment. 2. Central Asia. Bull Geol Instit Uppsala 14:143–162Google Scholar
  120. Coffin MF, Eldholm O (1994) Large igneous provinces: Crustal structure, dimensions, and external consequences. Rev Geophys 32:1–36Google Scholar
  121. Coffin MF, Gahagan LM (1995) Ontong Java and Kerguelen plateaux: Cretaceous Icelands? J Geol Soc London 152:1047–1052Google Scholar
  122. Coldwell B, Clemens J, Petford N (2011) Deep crustal melting in the Peruvian Andes: felsic magma generation during delamin Geological Survey of Canada, ation and uplift. Lithos 125:272–286Google Scholar
  123. Collins WJ (1993) Melting of Archaean sialic crust under high aH2O conditions: genesis of 3300 Ma Na-rich granitoids in the Mount Edgar Batholith, Pilbara Block, Western-Australia. Precamb Res 60:151–174Google Scholar
  124. Collins WJ, Van Kranendonk MJ, Teyssier C (1998) Partial convective overturn of Archaean crust in the east Pilbara Craton, Western Australia: driving mechanisms and tectonic implications. J Struct Geol 20:1405–1424Google Scholar
  125. Coltice N, Bertrand H, Rey P, Jourdan F, Phillips BR, Ricard Y (2009) Global warming of the mantle beneath continents back to the Archaean. Gondwana Res 15:254–266Google Scholar
  126. Condie KC (1981) Archean Greenstone Belts. Elsevier, Amsterdam, pp 434Google Scholar
  127. Condie KC (1998) Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet Sci Lett 163:97–108Google Scholar
  128. Condie KC (2003) Incompatible element ratios in oceanic basalts and komatiites: Tracking deep mantle sources and continental growth rates with time. Geochem Geophys Geosyst 4. doi:2002GC000333Google Scholar
  129. Condie KC (2005) High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos 79:491–504Google Scholar
  130. Connolly BD, Puchtel IS, Walker RJ, Arevalo R, Piccoli PM, Byerly G, Robin-Popieul C, Arndt N (2011) Highly siderophile element systematics of the 3.3 Ga Weltevreden Komatiites, South Africa: implications for early Earth history. Earth Planet Sci Lett 311:253–263Google Scholar
  131. Conrad CP, Lithgow-Bertelloni C (2006) Influence of continental roots and asthenosphere on plate-mantle coupling, Geophys Res Lett 33: L05312. doi:10.1029/2005GL025621Google Scholar
  132. Cook FA, van der Velden AJ (2012) Crustal seismic reflection profiles of collisional orogens. In: Roberts DG, Bally AW (eds) Regional Geology and Tectonics: Principles of Geologic Analysis, Elsevier, 179–213. doi:10.1016/B978-0-444-53042-4.00007-8Google Scholar
  133. Corrigan D, Hanmer S (1997) Anorthosites and related granitoids in the Grenville orogen: A product of convective thinning of the lithosphere? Geology 25:61–64Google Scholar
  134. Crisp D et al (2002) Divergent Evolution Among Earth-like Planets: The Case for Venus Exploration. In: Sykes MV (ed) The Future of Solar System Exploration (2003–2013) Astronomical Society of the Pacific Conference Proceedings 272: 5–34Google Scholar
  135. Cruden AR, Nasseri MHB, Pysklywec R (2006) Surface topography and internal strain variation in wide hot orogens from three-dimensional analogue and two-dimensional numerical vice models. In: Buiter SJH, Schreurs G (eds). Analogue and Numerical Modelling of Crustal-Scale Processes. Geol Soc London Spec Pubs 253:79–104Google Scholar
  136. Crumpler LS, Head JH, Campbell DB (1988) Orogenic belts on Venus. Geology 14:1031–1034Google Scholar
  137. Cunningham WD (2001) Cenozoic normal faulting and regional doming in the southern Hangay region, Central Mongolia: implications for the origin of the Baikal rift province. Tectonophysics 331:389–411Google Scholar
  138. Czarnota K, Champion DC, Cassidy KF, Goscombe B, Blewett RS, Henson PA, Groenewald PB (2010) The geodynamics of the Eastern Goldfields Superterrane. Precamb Res 183:175–202Google Scholar
  139. Daigneault R (1991) Évolution structurale du segment de roches vertes de Chibougamau, Sous-Province archéenne de l’Abitibi, Québec. PhD thesis, Université Laval. 352 p. doi:01–1494946Google Scholar
  140. Daigneault R (1996) Couloirs de déformation de la Sous-Province de l’Abitibi. MB 96–33, Ministère des Ressources naturelles, Secteur des mines, Québec, 128 ppGoogle Scholar
  141. Daigneault R, St-Julien P, Allard GO (1990) Tectonic evolution of the northeast portion of the Archean Abitibi greenstone belt, Chibougamau area, Quebec. Can J Earth Sci 27:1714–1736Google Scholar
  142. Daigneault R, Mueller WU, Chown EH (2002) Oblique Archean subduction: accretion and exhumation of an oceanic arc during dextral transpression, Southern Volcanic Zone, Abitibi Subprovince Canada. Precamb Res 115:261–290Google Scholar
  143. Darling J, Storey C, Hawkesworth C (2009) Impact melt sheet zircons and their implications for the Hadean crust. Geology 37:927–930Google Scholar
  144. Davies GF (1979) Thickness and thermal history of continental crust and root zones. Earth Planet Sci Lett 44:231–238Google Scholar
  145. Davies GF (1992) On the emergence of plate tectonics. Geology 20:963–966Google Scholar
  146. Davies GF (2006) Gravitational depletion of the early Earth’s upper mantle and the viability of early plate tectonics. Earth Planet Sci Lett 243:376–382Google Scholar
  147. Davies GF (2008) Episodic layering of the early mantle by the ’basalt barrier’ mechanism. Earth Planet Sci Lett 275:382–392Google Scholar
  148. Davis DW, Edwards G (1986) Crustal evolution of Archean rocks in the Kakagi Lake area, Wabigoon subprovince, northwest Ontario. Can J Earth Sci 23:182–192Google Scholar
  149. Davis WJ, Machado N, Gariépy C, Sawyer EW, Benn K (1995) U—Pb geochronology of the Opatica tonalite-gneiss belt and its relationship to the Abitibi greenstone belt, Superior Province, Quebec. Can J Earth Sci 32:113–127Google Scholar
  150. Davy P, Cobbold PR (1988) Indentation tectonics in nature and experiment. 1. Experiments scaled for gravity. Bull Geol Inst Uppsala 14:129–141Google Scholar
  151. Debaille V, O’Neill C, Brandon AD, Haenecour P, Yin Q-Z, Mattielli N, Treiman AH (2012) Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. 22nd VM Goldschmidt Conference, Earth in Evolution, June 24–29, Montreal, Canada, Abstract, session 5, p 35Google Scholar
  152. de Brémond d’Ars J, Lécuyer C, Reynard B (1999) Hydrothermalism and diapirism in the Archean: gravitational instability constraints. Tectonophysics 304:29–39Google Scholar
  153. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665Google Scholar
  154. DeLaughter JE, Jurdy DM (1999) Corona classification by evolutionary stage. Icarus 139:81–92Google Scholar
  155. De Smet J, Van den Berg AP, Vlaar NJ (2000) Early formation and long-term stability of continents resulting from decompression melting in a convecting mantle. Tectonophysics 322:19–33Google Scholar
  156. Desrochers J-P, Hubert C, Ludden JN, Pilote P (1993) Accretion of Archean oceanic plateau fragments in the Abitibi greenstone belts, Canada. Geology 21:451–454Google Scholar
  157. de Wit MJ (1982) Gliding and overthrust nappe tectonics in the Barberton greenstone belt. J Struct Geol 4:117–136Google Scholar
  158. de Wit MJ (1998) Early Archean processes: evidence from the South African Kaapvaal craton and its greenstone belts. Geol Mijnbouw 76:369–373Google Scholar
  159. de Wit MJ, de Ronde CEJ, Tredoux M, Roering C, Hart RJ, Armstrong RA, Green RWE, Pebedy E, Hart RA (1992) Formation of an Archaean continent. Nature 357:553–562Google Scholar
  160. Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Bull Geol Soc Am 123:387–411Google Scholar
  161. Dimroth E, Imreh L, Rocheleau M, Goulet N (1982) Evolution of the south-central segment of the Archean Abitibi Belt, Quebec. Part I: Stratigraphy and paleogeographic model. Can J Earth Sci 19:1729–1758Google Scholar
  162. Dimroth E, Imreh L, Goulet N, Rocheleau M (1983) Evolution of the south-central segment of the Archean Abitibi Belt, Quebec. Part III: Plutonic and metamorphic evolution and geotectonic model. Can J Earth Sci 20:1374–1388Google Scholar
  163. Dimroth E, Rocheleau M, Mueller W (1984) Paleogeography, isostasy and crustal evolution of the Archean Abitibi Belt: a comparison between the Rouyn-Noranda and Chibougamau areas. Guha J Chown EH (eds) Chibougamau—Stratigraphy Mineralization Can Inst Mining Spec 34:73–91Google Scholar
  164. Dimroth E, Mueller W, Daigneault R, Brisson H, Poitras A, Rocheleau M (1986) Diapirism during regional compression: the structural pattern in the Chibougamau region of the Archean Abitibi Belt, Quebec: Geol Rund 75:715–736Google Scholar
  165. Dinel E, Bleeker W, Ayer J, Dubé B (2008) Structural investigation and mineral potential of the Kidd-Munro assemblage in Clergue and Walker townships. Geo Surv Canada Current Res 2008-23, pp 10Google Scholar
  166. Donaldson JA, de Kemp EA (1998) Archaean quartz arenites in the Canian Shield; examples from the Superior and Churchill provinces. Sediment Geol 120:153–176Google Scholar
  167. Dorminey B (2009) Venus may have had continents and oceans. Nature. doi:10.1038/news.2009.24. Accessed 3 Feb 2013
  168. Dostal J, Mueller WU (2013) Deciphering an Archean mantle plume: Abitibi greenstone belt, Canada. Gondwana Res 23:493–505Google Scholar
  169. Dubé B (1990) Metallogénie aurifere du filon-couche de Bourbeau, région de Chibougamau, Québec. PhD Thesis, Université du Quebec à Chicoutimi. Accessed 3 Feb 2013
  170. Dubé B, Gosselin P (2007) Greenstone-hosted quartz-carbonate vein deposits. In: Goodfellow WD (ed). Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Spec Pub 5:49–73Google Scholar
  171. Dubé B, Guha J (1992) Relationship between NE trending regional faults and Archean mesothermal gold-copper mineralization: Cooke mine, Abitibi greenstone belt, Quebec, Canada. Econ Geol 87:1525–1540Google Scholar
  172. Ducea M, Saleeby J (1998) A case for delamination of the deep batholithic crust beneath the Sierra Nevada, California. Int Geol Rev 40:78–93Google Scholar
  173. Duchesne JC, Wilmart E (1997) Igneous charnockites and related rocks from the Bjerkreim-Sokndal layered intrusion (Southwest Norway). A jotunite (hypersthene monzodiorite)-derived A-type granitoid suite. J Petrol 38:337–369Google Scholar
  174. Dufréchou G (2011) Origine et implications tectoniques de structures transverses profondes interprétées à partir de données de champ potentiel, Province de Grenville, Canada. PhD Thesis, INRS-ETE, Québec.
  175. Dufréchou G, Harris LB (2013) Tectonic models for the origin of regional transverse structures in the SW Grenville Province interpreted from regional gravity. J. Geodynamics 64:15–39Google Scholar
  176. Duncan RA (1981) Hotspots in the southern oceans—An absolute frame of reference for motion of the Gondwana continents. Tectonophysics 74:29–42Google Scholar
  177. Drury SA (1993) Image Interpretation in Geology, 2nd Edition. Chapman and Hall, LondonGoogle Scholar
  178. Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356Google Scholar
  179. Eaton DW, Frederiksen A (2007) Seismic evidence for convection-driven motion of the North American plate. Nature 446:428–431Google Scholar
  180. Ellis BS, Barry T, Branney MJ, Wolff JA, Bindeman I, Wilson R, Bonnichsen B (2011) Petrologic constraints on the development of a large-volume, high temperature, silicic magma system the Twin Falls eruptive centre, central Snake River Plain. Lithos 120:475–489Google Scholar
  181. Elkins-Tanton LT (2007) Continental magmatism, volatile recycling, and a heterogeneous mantle caused by lithospheric gravitational instabilities. J Geophys Res Solid Earth 112(B3) doi 10.1029/2005JB004072Google Scholar
  182. Elkins-Tanton LT, Hager BH (2005) Giant meteoroid impacts can cause volcanism. Earth Planet Sci Lett 239:219–232Google Scholar
  183. Elkins-Tanton LT, Hager BH, Grove TL (2004) Magmatic effects of the lunar late heavy bombardment. Earth Planet Sci Lett 222:17–27Google Scholar
  184. Erickson EJ (2010) Structural and kinematic analysis of the Shagawa Lake Shear Zone, Superior Province, Northern Minnesota: Implications for the role of vertical versus horizontal tectonics in the Archean. Can J Earth Sci 47:1463–1479Google Scholar
  185. Ernst RE (2007) Large Igneous Provinces (LIPs) in Canada through time and their metallogenic potential. In: Goodfellow WD (ed) Mineral Deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods, geological association of Canada, mineral deposits division, Special Publication 5, pp 929–937.Google Scholar
  186. Ernst RE, Bleeker W (2010) Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to present. Can J Earth Sci 47:695–739Google Scholar
  187. Ernst RE, Buchan KL (2003) Recognizing mantle plumes in the geological record. Ann Rev Earth Planet Sci 31:469–523Google Scholar
  188. Ernst RE, Desnoyers DW (2004) Lessons from Venus for understanding mantle plumes on Earth. Phys Earth Planet Int 146:195–229Google Scholar
  189. Ernst RE, Head JW, Parfitt E, Grosfils E, Wilson L (1995) Giant radiating dyke swarms on Earth and Venus. Earth Sci Rev 39:1–58Google Scholar
  190. Ernst WG (2007) Speculations on evolution of the terrestrial lithosphere-asthenosphere system—Plumes and plates. Gondwana Res 11:38–49Google Scholar
  191. European Space Agency (2009) New map hints at Venus’ wet volcanic past. Accessed 3 Feb 2013
  192. Faure S (2001) Analyse des linéaments géophysiques en relation avec les minéralisations en or et métaux de base de l’Abitibi. Rapport, Projet CONSOREM 2000-03A, 26 pGoogle Scholar
  193. Faure S (2009) Reconnaissance des structures synvolcaniques fertiles pour les minéralisations de sulfures massifs volcanogènes (Cu-Zn) dans le groupe de Blake River, Abitibi. Rapport du projet CONSOREM 2007-03, 48pGoogle Scholar
  194. Faure S (2010) World Kimberlites CONSOREM Database (Version 3), Consortium de Recherche en Exploration Minérale CONSOREM, Université du Québec à MontréalGoogle Scholar
  195. Faure S, Rafini S (2004) Modélisation des paléocontraintes et des paléopressions le long de la Faille Porcupine-Destor: Implication pour la formation de bassins sédimentaires, d’intrusions et de minéralisations aurifères. Rapport du projet CONSOREM 2003-03, 47 pp. Accessed 1 Feb 2013
  196. Faure S, Daigneault R, Godey S (2008) La géométrie et la fertilité des ceintures de roches vertes archéennes de la Province du lac Supérieur: Reflet de l’architecture et de la modification du manteau lithosphérique. Abstract, Québec Exploration 2008. and poster Accessed 3 Feb 2013
  197. Faure S, Godey S, Fallara F (2010a) Tomographie sismique des cratons et des ceintures de roches vertes: exploration régionale pour le diamant et l’or. Ateliers CONSOREM: Utilisation des outils et méthodes du CONSOREM, Québec Exploration 2010, Accessed 1 Feb 2013
  198. Faure S, Rafini S, Trépanier S (2010b) Modélisation géomécanique des paléocontraintes pour l’exploration de l’or orogénique en Abitibi. Québec Exploration 2010– Ateliers CONSOREM: Utilisation des outils et méthodes du CONSOREM. Accessed 1 Feb 2013
  199. Faure S, Godey S, Fallara F, Trépanier S (2011) Seismic architecture of the Archean North American mantle and its relationship to diamondiferous kimberlite fields. Econ Geol 106:223–240Google Scholar
  200. Fayol N, Harris LB, Jébrak M (2011) Dynamique transpressive et rôle des hétérogénéités crustales dans la localisation du bassin de Desmaraisville (Abitibi): étude géophysique et modélisation analogique. Résumés des conférences et des photoprésentations, Québec Exploration 2011, DV 2011-03, 41Google Scholar
  201. Fayol N, Harris LB, Jébrak M (2012) Transpressional dynamics and the role of crustal heterogeneities in the localization of the Desmaraisville basin (Abitibi): Geophysical study and analogue modelling. Abstract, PDAC 2012 International Convention, Trade Show and Investors Exchange, Toronto. Accessed 1 Feb 2013Google Scholar
  202. Fernández C, Anguita F, Ruiz J, Romeo I, Martín-Herrero ÁI, Rodríguez A, Pimentel C (2010) Structural evolution of Lavinia Planitia, Venus: Implications for the tectonics of the lowland plains. Icarus 206:210–228Google Scholar
  203. Flament N (2009) Secular cooling of the solid Earth, emergence of the continents, and evolution of Earth’s external envelopes. PhD thesis, U Sydney. Accessed 3 Feb 2013Google Scholar
  204. Forte AM, Moucha R, Simmons NA, Grand SP, Mitrovica JX (2010) Deep-mantle contributions to the surface dynamics of the North American continent. Tectonophysics 481:3–15Google Scholar
  205. Foster A, Nimmo F (1996) Comparisons between the rift systems of East Africa, Earth and Beta Regio, Venus. Earth Planet Sci Lett 143:183–195Google Scholar
  206. Fowler AC, O’Brien SBG (2003) Lithospheric failure on Venus. Proc R Soc Lond 459:2663–2704Google Scholar
  207. Fralick P, Wu J, Williams HR (1992) Trench and slope basin deposits in an Archean metasedimentary belt, Superior Province, Canadian Shield. Can J Earth Sci 29:2551–2557Google Scholar
  208. Frederiksen S, Braun J (2001) Numerical modelling of strain localisation during extension of the continental lithosphere. Earth Planet Sci Lett 188:241–251Google Scholar
  209. Frederiksen AW, Miong S-K, Darbyshire FA, Eaton DW, Rondenay S, Sol S (2007) Lithospheric variations across the Superior Province, Ontario, Canada: Evidence from tomography and shear wave splitting. J Geophys Res 112:B07318. doi:10.1029/2006JB004861Google Scholar
  210. Friend CRL, Nutman AP (2010) Eoarchean ophiolites? New evidence for the debate on the Isua Supracrustal Belt, Southern West Greenland. Am J Sci 310:826–861Google Scholar
  211. Frost BR, Frost CD (2008) On charnockites. Gondwana Res 13:30–44Google Scholar
  212. Frost CD, Frost BR, Lindsley DH, Chamberlain KR, Swapp SM, Scoates JS (2010) Geochemical and isotopic evolution of the anorthositic plutons of the Laramie Anorthosite Complex: Explanations for variations in silica activity and oxygen fugacity of massif anorthosites. Can Mineral 48:925–946Google Scholar
  213. Furnes H, de Wit M, Staudigel H, Rosing M, Muehlenbachs K (2007a) A vestige of Earth’s oldest ophiolite. Science 315:1704–1707Google Scholar
  214. Furnes H, de Wit M, Staudigel H, Rosing M, Muehlenbachs K (2007b) Response to comments on ”A vestige of Earth’s oldest ophiolite”. Science 318:U4–U5Google Scholar
  215. Furnes H, de Wit M, Robins B, Sandsta NR (2011) Volcanic evolution of the upper Onverwacht Suite, Barberton Greenstone Belt, South Africa. Precamb Res 186:28–50Google Scholar
  216. Galley A, Hannington M, Jonasson I (2008) Volcanogenic Massive Sulphide Deposits. In: Goodfellow WD (ed) Mineral Deposits of Canada: A Synthesis of Major Deposit Types. Geological Association of Canada, Mineral Deposits Division and Geological Survey of Canada Special Publication 5 ISBN-13: 978-1-897095-24-9, pp 141–162Google Scholar
  217. Gariépy C, Allègre CJ (1985) The lead isotope geochemistry of late kinematic intrusives from the Abitibi greenstone belt, and their implications for late Archean crustal evolution. Geochim Cosmochim Acta 49:2371–2384Google Scholar
  218. Ghent R, Hansen V (1999) Structural and kinematic analysis of eastern Ovda Regio, Venus: implications for crustal plateau formation. Icarus 139:116–136Google Scholar
  219. Gibson IL, Roberts RG, Gibbs A (1986) An extensional fault model for the early development of greenstone belts, with reference to a portion of the Abitibi belt, Ontario, Canada. Earth Planet Sci Lett 79:159–167Google Scholar
  220. Gill JB (1981) Orogenic andesites and plate tectonics. Springer Verlag, Berlin, p 390Google Scholar
  221. Girardi JD, Patchett PJ, Ducea MN, Gehrels GE, Cecil MR, Rusmore ME, Woodsworth GJ, Pearson DM, Manthei C, Wetmore P (2012) Elemental and isotopic evidence for granitoid genesis from deep-seated sources in the Coast Mountains Batholith, British Columbia. J Petrol 53:1505–1536Google Scholar
  222. Glukhovskiy MZ, Pavlovskiy YeV, Moralev VM (1986) Ring structures and granite-gneiss domes. Int Geol Rev 28:1202–1212Google Scholar
  223. Godey S (2002) Structure of the uppermost mantle beneath North America: Regional surface wave tomography and thermo-chemical interpretation, Tekst Proefschrift Universiteit Utrecht. Accessed 1 Feb 2013
  224. Godey S, Deschamps F, Trampert J, Snieder R (2004) Thermal and compositional anomalies beneath the North American continent, J Geophys Res 109, B01308. doi:10.1029/2002JB002263Google Scholar
  225. Godey S, Snieder R, Villaseñor A, Benz HM (2003) Surface wave tomography of North America and the Caribbean using global and regional broad-band networks: phase velocity maps and limitations of ray theory. Geophys J Int 152:620–632Google Scholar
  226. Goldfarb RJ, Baker T, Dubé B, Groves DI, Hart CJR, Robert F, Gosselin P (2005) World distribution, productivity, character, and genesis of gold deposits in metamorphic terranes. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol 100th Anniversary Volume 407–450Google Scholar
  227. Goodwin AM (1977) Archean volcanism in Superior Province, Canadian Shield. Geol Assoc Can Spec Pap 16:205–241Google Scholar
  228. Goodwin AM (1981) Archaean plates and greenstone belts. In: Kröner A (ed) Precambrian Plate Tectonics, Elsevier Amsterdam, pp 105–135Google Scholar
  229. Goodwin AM (1996) Principles of Precambrian Geology. Academic Press, London, pp 327Google Scholar
  230. Gorczyk W, Hobbs B, Gerya TV (2012) Initiation of Rayleigh–Taylor instabilities in intra-cratonic settings. Tectonophysics 514–517:146–155Google Scholar
  231. Gosselin G (1998) Veines de quartz aurifères précoces à la zone ouest de la mine Doyon, Canton de Bousquet, Preissac, Abitibi. Mémoire, Université du Québec à Chicoutimi. Accessed 1 Feb 2013
  232. Gosselin P, Dubé B (2005) Gold deposits and gold districts of the world. Geological Survey of Canada, Open File, 4893Google Scholar
  233. Goutier J (2006) Géologie de la région du lac au Goéland (32F/15). RG 2005-05, Géologie Québec, Ministère des Ressources naturelles et de la Faune, QuébecGoogle Scholar
  234. Goutier J, Melançon M (2007) Compilation géoologique de la Sous-province de l’Abitibi (version préliminaire): Ministère des Ressources naturelles et de la Faune du Québec, Report RP2010-04 (1:250,000)Google Scholar
  235. Gramling C (2009) Venus’ gentler, Earth-like past. Earth Magazine. Accessed 3 Feb 2013
  236. Gray R, Pysklywec RN (2010) Geodynamic models of Archean continental collision and the formation of mantle lithosphere keels. Geophys Res Lett 37:L19301. doi:10.1029/2010GL043965Google Scholar
  237. Green DH, Falloon TJ (1998) Pyrolite: a Ringwood concept and its current expression. In: Jackson I (ed) The Earth’s Mantle: Composition, Structure and Evolution. Cambridge University Press, Cambridge, UK, pp 311–378Google Scholar
  238. Griffin WL, O’Reilly SY (2007) Cratonic lithospheric mantle: Is anything subducted? Episodes 30:43–53Google Scholar
  239. Griffin WL, O’Reilly SY, Abe N, Aulbach S, Davies RM, Pearson NJ, Doyle BJ, Kivi K (2003) The origin and evolution of Archean lithospheric mantle. Precamb Res 127:19–41Google Scholar
  240. Griffin WL, O’Reilly SY, Afonso JC, Begg GC (2009) The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J Petrol 50:1185–1204Google Scholar
  241. Griffin WL, O’Reilly SY, Afonso JC, Begg GC (2010) The evolution and extent of Archean continental lithosphere: implications for tectonic models. In: Planet Formation, Crustal Growth and the Evolving Lithosphere: 5th International Archean Symposium. Accessed 3 Feb 2013
  242. Griffin WL, O’Reilly SY, Doyle BJ, Pearson NJ, Coopersmith H, Kivi K, Malkovets V, Pokhilenko N (2004) Lithosphere mapping beneath the north American plate. Lithos 77:873–922Google Scholar
  243. Grimm RE (1998) What do we really know about the heat flow of Venus (or anyplace else we can’t stick with probes?). The Leading Edge, Nov. 1998:1,544-1,546Google Scholar
  244. Grimm RE, Phillips RJ (1992) Anatomy of a Venusian hot spot: Geology, gravity, and mantle dynamics of Eistla Regio. J Geophys Res 97E:16,035–16,054Google Scholar
  245. Grimm RE, Hess PC (1997) The Crust of Venus. In: Bougher SW, Hunten DM, Phillips RJ (eds) Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment. University of Arizona Press, Tucson, 1205–1244Google Scholar
  246. Grimm RE, Barr AC, Harrison KP, Stillman DE, Neal KL, Vincent MA, Delory GT (2012) Aerial electromagnetic sounding of the lithosphere of Venus. Icarus 217:462–473Google Scholar
  247. Groves DI, Goldfarb RJ, Knox-Robinson CM, Ojala J, Gardoll S, Yun GY, Holyland P (2000) Late-kinematic timing of orogenic gold deposits and significance for computer-based exploration techniques with emphasis on the Yilgarn Block, Western Australia. Ore Geol Rev 17:1–38Google Scholar
  248. Gueydan F, Morency C, Brun J-P (2008) Continental rifting as a function of lithosphere mantle strength. Tectonophysics 460:83–93Google Scholar
  249. Halls HC, Zhang B (1998) Uplift structure of the southern Kapuskasing zone from 2.45 Ga dike swarm displacement. Geology 26:67–70Google Scholar
  250. Hamilton WB (1998) Archean tectonics and magmatism. Int Geol Rev 40:1–39Google Scholar
  251. Hamilton WB (2005) Plumeless Venus has ancient impact-accretionary surface. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, Plumes, and Paradigms, GSA Spec Paper 388: 781–814Google Scholar
  252. Hamilton WB (2007) Earth’s first two billion years—The era of internally mobile crust. In: Hatcher RD Jr, Carlson MP., McBride JH., Martinez-Catalan JR (eds) 4-D Framework of Continental Crust, Geol Soc Amer Memoir 200:233–296Google Scholar
  253. Hamilton WB (2011) Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated. Lithos 123:1–20Google Scholar
  254. Hansen VL (2007a) Subduction origin on early Earth: A hypothesis. Geology 35:1059–1062Google Scholar
  255. Hansen VL (2007b) Venus: a thin-lithosphere analog for early Earth? In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s Oldest Rocks, Developments in Precambrian Geology 15, Chapter 8.1, 987–1012Google Scholar
  256. Hansen VL, Willis JJ (1996) Structural analysis of a sampling of tesserae: Implications for Venus geodynamics. Icarus 123:296–312Google Scholar
  257. Hansen VL, Willis JJ (1998) Ribbon terrane formation, southwestern Fortuna Tessera, Venus: Implications for lithospheric evolution. Icarus 132:321–343Google Scholar
  258. Hansen VL, Young DA (2007) Venus’s evolution: a synthesis. In: Cloos M, Carlson WD, Gilbert MC, Liou JG, Sorensen SS (eds) Convergent Margin Terranes and Associated Regions: a Tribute to W.G. Ernst: GSA Special Paper 419:255–273Google Scholar
  259. Hansen VL, Banks BK, Ghent RR (1999) Tessera terrain and crustal plateaus, Venus. Geology 27:1,071-1:074Google Scholar
  260. Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ, Kasting JF (2008) A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8:1127–1137Google Scholar
  261. Harig C, Zhong S, Simons FJ (2010) Constraints on upper mantle viscosity from the flow-induced pressure gradient across the Australian continental keel. Geochem Geophys Geosys 11, Q06004. doi:10.1029/2010GC003038Google Scholar
  262. Harris LB (1987) A tectonic framework for the Western Australian Shield and its significance to gold mineralisation—a personal view. In: Ho SE, Groves DI (eds) Recent Advances in the Understanding of Precambrian Gold Deposits. Geology Department and University Extension, University of Western Australia Publication 11:1–27Google Scholar
  263. Harris LB (2013) Interactive 3D S-wave tomographic isosurfaces for the Superior Province, Canada,
  264. Harris LB, Byrne DR, Wetherly S, Beeson J (2004) Analogue modelling of structures developed above single and multiple mantle plumes: applications to brittle crustal deformation on Earth and Venus. In: Bertotti G, Buiter S, Ruffo P, Schreurs G (eds) GeoMod 2004– From mountains to sedimentary basins: modelling and testing geological processes. Boll Geofis teorica applicata 45(Supp. 1):301–303Google Scholar
  265. Harris LB, Dufréchou G, Armengaud C, Johnson E (2010) The role of deep-crustal transverse structures interpreted from regional gravity in the localization and deformation of zinc deposits in the North American Grenville Province. In: Archibald SM (ed) Zinc2010, Proceedings of the Zinc2010 Meeting, Cork, Irish Association for Economic Geology, 49–52. Accessed 1 Feb 2013
  266. Harris LB, Godin L, Yakymchuk (2012) Regional shortening followed by channel flow induced collapse: A new mechanism for “dome and keel” geometries in Neoarchaean granite-greenstone terrains. Precamb Res 212–213,139–154Google Scholar
  267. Hart TR, Gibson HL, Lesher CM (2004) Trace element geochemistry and petrogenesis of felsic volcanic rocks associated with volcanogenic massive Cu-Zn-Pb sulfide deposits. Econ Geol 99:1003–1013Google Scholar
  268. Hashimoto GL, Roos-Serote M, Sugita S, Gilmore MS, Kamp LW, Carlson RW, Baines KH (2008) Felsic highland crust on Venus suggested by Galileo near-infrared mapping spectrometer data, J Geophys Res 113, E00B24. doi:10.1029/2008JE003134Google Scholar
  269. Hawkesworth CJ, Kemp AIS (2006) Evolution of the continental crust. Nature 443:811–817Google Scholar
  270. Head JW (1990a) Processes of crustal formation and evolution on Venus: an analysis of topography, hypsometry, and crustal thickness variations. Earth Moon Planets 50/51:25–55Google Scholar
  271. Head JW (1990b) Formation of mountain belts on Venus: Evidence for large-scale convergence, underthrusting, and crustal imbrication in Freyja Montes, Ishtar Terra. Geology 18:99–102Google Scholar
  272. Head JW, Campbell DB, Elachi C, Guest JE, McKenzie D, Saunders RS, Schaber GG, Schubert G (1991) Venus volcanism: initial analysis of Magellan data. Science 252:276–288Google Scholar
  273. Head JW, Hurwitz DM, Ivanov MA, Basilevsky AT, Kumar PS (2008) Geological mapping of Fortuna Tessera (V-2): Venus and Earth’s Archean process comparisons. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ. Accessed 3 Feb 2013
  274. Hegner E, Emslie RF, Iaccheri LM, Hamilton MA (2010) Sources of the Mealy Mountains and Atikonak River anorthosite-granitoid complexes, Grenville Province, Canada. Can Mineral 48:787–808Google Scholar
  275. Helmstaedt HH, Schulze DJ (1986) Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithosphere evolution. In: Ross J (ed) Kimberlites and Related Rocks, Blackwell, Carleton, Spec Publ Geol Soc Aust 14:358–368Google Scholar
  276. Herrick RR, Phillips RJ (1992) Geological correlations with the interior density structure of Venus. J Geophys Res 97:16,017–16,034Google Scholar
  277. Herrick RR, Dufek J, McGovern PJ (2005) Evolution of large shield volcanoes on Venus. J Geophys Res 110:E01002, pp 19. doi:10.1029/2004JE002283Google Scholar
  278. Herzberg C (1999) Phase equilibrium constraints on the formation of cratonic mantle. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle Petrology, Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd, The Geochemical Society Special Publication, Washington DC 6:241–257Google Scholar
  279. Herzberg C (2004) Geodynamic information in peridotite petrology. J Petrol 45:2507–2530Google Scholar
  280. Herzberg C, Asimow PD, Arndt N, Niu Y, Lesher CM, Fitton JG, Cheadle MJ, Saunders AD (2007) Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochem Geophys Geosys 8:2006GC001390Google Scholar
  281. Herzberg CT, Rudnick R (2012) Formation of cratonic lithosphere: An integrated thermal and petrological model. Lithos 149:4–15. doi:10.1016/j.lithos.2012.01.010Google Scholar
  282. Herzberg CT, Fyfe WS, Carr MJ (1983) Density constraints on the formation of the continental Moho and crust. Contrib Mineral Petrol 84:1–5Google Scholar
  283. Hess PC, Head JW (1990) Derivation of primary magmas and melting of crustal materials on Venus: some preliminary petrogenetic considerations. Earth Moon Planets 50/51:57–80Google Scholar
  284. Hewitt DF (1963) The Timiskaming series of the Kirkland Lake area. Can Mineral 7:497–523Google Scholar
  285. Hickman AH (1984) Archaean diapirism in the Pilbara Block, Western Australia. In: Kröner A; Greiling R (eds) Precambrian Tectonics Illustrated, E.Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 113–127Google Scholar
  286. Hill RI (1993) Mantle plumes and continental tectonics. Lithos 30:193–206Google Scholar
  287. Hill RI, Campbell IH, Compston W (1989) Age and origin of granitic rocks in the Kalgoorlie-Norseman region of Western Australia: Implications for the origin of Archaean crust. Geochim Cosmochim Acta 53:1259–1275Google Scholar
  288. Hill RI, Campbell IH, Davies GF, Griffiths RW (1992) Mantle plumes and continental tectonics. Science 256:186–193Google Scholar
  289. Hoernle K, Hauff F, Van Den Bogaard P, Werner R, Mortimer N, Geldmacher J, Garbe-Schönberg D, Davy B (2010) Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic plateaus. Geochim Cosmochim Acta 74:7196–7219Google Scholar
  290. Hoffmann JE, Carsten MC, Næraa T, Rosing MT, Herwartz D, Garbe-Schönberg D, Svahnberg H (2011) Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs. Geochim Cosmochim Acta 75:4157–4178Google Scholar
  291. Hollings P, Kerrich R (2004) Geochemical systematics of tholeiites from the 2.86 Ga Pickle Crow Assemblage, northwestern Ontario: arc basalts with positive and negative Nb-Hf anomalies. Precamb Res 134:1–20Google Scholar
  292. Hoogenboom T, Houseman GA (2006) Rayleigh–Taylor instability as a mechanism for corona formation on Venus. Icarus 180:292–307Google Scholar
  293. Houseman GA, Houseman DK (2010) Stability and periodicity in the thermal and mechanical evolution of the early continental lithosphere. Lithos 120:42–54Google Scholar
  294. Hronsky JMA, Groves DI, Loucks RR, Begg GC (2012) A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods. Mineral Deposita 47:339–358Google Scholar
  295. Hubert C, Trudel P, Gélinas L (1984) Archean wrench fault tectonics and structural evolution of the Blake River Group, Abitibi Belt, Quebec. Can J Earth Sci 21:1024–1032Google Scholar
  296. Husson L, Conrad CP, Faccenna C (2012) Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell. Earth Planet Sci Lett 316–317:126–135Google Scholar
  297. Huston DL, Blewett RS, Keillor B, Standing J, Smithies RH, Marshall A, Mernagh TP, Kamprad J (2002) Lode gold and epithermal deposits of the Mallina Basin, North Pilbara Terrain, Western Australia. Econ Geol 97:801–818Google Scholar
  298. Ivanov MA, Head JW (2011) Global geological map of Venus. Planet Space Sci 59:1559–1600Google Scholar
  299. Jackson SL, Cruden AR (1995) Formation of the Abitibi greenstone belt by arc-trench migration. Geology 23:471–474Google Scholar
  300. Jahn BM, Glikson AY, Peucat JJ, Hickman AH (1981) REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for early crustal evolution. Geochim Cosmochim Acta 45:1633–1652Google Scholar
  301. Janes DM, Squyres SW, Bindschadler DL, Baer G, Schubert G, Sharpton VL, Stofan ER (1992) Geophysical models for the formation and evolution of coronae on Venus. J Geophys Res 97E:16,055–16,068Google Scholar
  302. Janle P, Jannsen D (1986) Gravity studies of Aphrodite Terra on Venus. Earth Moon Planets 36:275–287Google Scholar
  303. Jones AP (2005) Meteorite impacts as triggers to large igneous provinces. Elements 1:277–281Google Scholar
  304. Jordan TH (1988) Structure and formation of the continental tectosphere. J Petrol Special Lithosphere Issue:11–37Google Scholar
  305. JPL (undated) Magellan Mission at a Glance, NASA Jet Propulsion Laboratory, California Institute of Technology. Accessed 3 Feb 2013
  306. Jull MG, Arkani-Hamed J (1995) The implications of basalt in the formation and evolution of mountains on Venus. Phys Earth Planet Int 89:163–175Google Scholar
  307. Jull MG, Kelemen PB (2001) On the conditions for lower crustal convective instability. J Geophys Res Solid Earth 106:6423–6446Google Scholar
  308. Kamber BS (2010) Archean mafic-ultramafic volcanic landmasses and their effect on ocean-atmosphere chemistry. Chem Geol 274:19–28Google Scholar
  309. Kamber BS, Kramers JD, Napier R, Cliff RA, Rollinson HR (1995) The Triangle Shear zone, Zimbabwe, revisited: an important event at 2.0 Ga in the Limpopo Belt. Precamb Res 70:191–213Google Scholar
  310. Kameyama M, Ogawa M (2000) Transitions in thermal convection with strongly temperature-dependent viscosity in a wide box. Earth Planet Sci Lett 180:355–367Google Scholar
  311. Kamo S, Krogh T, Kumarapeli P (1995) Age of the Grenville dyke swarm, Ontario-Quebec: implications for the timing of Iapetan rifting. Can J Earth Sci 32:273–280Google Scholar
  312. Kaula WM, Phillips RJ (1981) Quantitative tests for plate tectonics on Venus. Geophys Res Lett 8:1187–1190Google Scholar
  313. Kelemen PB, Hart SR, Bernstein S (1998) Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett 164:387–406Google Scholar
  314. Kelemen PB, Hanghøj K, Greene AR (2005) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The Crust, Treatise on Geochemistry. Elsevier, Pergamon San Diego, v. 3:593–659Google Scholar
  315. Kemp AIS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A, Pidgeon RT, Vervoort D, DuFrane SA (2010) Hadean crustal evolution revisited: New constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet Sci Lett 296:45–56Google Scholar
  316. Kerr AC, White RV, Saunders AD (2000) LIP Reading: Recognizing oceanic plateaux in the geological record. J Petrol 41:1041–1056Google Scholar
  317. Kerrich R, Xie Q (2002) Compositional recycling structure of an Archean super-plume: Nb-Th-U-LREE systematics of Archean komatiites and basalts revisited. Contrib Mineral Petrol 142:476–484Google Scholar
  318. Kerrich R, Polat A (2006) Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics? Tectonophysics 415:141–165Google Scholar
  319. Kerrich R, Polat A, Wyman D, Hollings P (1999) Trace element systematics of Mg-, to Fe-tholeiitic basalt suites of the Superior Province: implications for Archean mantle reservoirs and greenstone belt genesis. Lithos 46:163–187Google Scholar
  320. Kerrich R, Polat A, Xie Q (2008) Geochemical systematics of 2.7 Ga Kinojevis Group (Abitibi) and Manitouwadge and Winston Lake (Wawa) Fe-rich basalt-rhyolite associations: Backarc rift oceanic crust? Lithos 101:1–23Google Scholar
  321. Ketchum JWF, Ayer JA, Breemen O van, Pearson NJ, Becker JK (2008) Pericontinental Crustal Growth of the Southwestern Abitibi Subprovince, Canada—U-Pb, Hf, and Nd Isotope Evidence. Econ Geol 103:1151–1184Google Scholar
  322. Kiefer WS (1991) Models for the formation of highland regions on Venus. PhD thesis, California Institute of Technology. Accessed 3 Feb 2013
  323. Kiefer WS, Hager BH (1991a) A mantle plume model for the equatorial highlands of Venus. J Geophys Res 96:E4. doi:10.1029/91JE02221Google Scholar
  324. Kiefer WS, Hager BH (1991b) Mantle downwelling and crustal convergence: a model for Ishtar Terra, Venus. J Geophys Res 96:20,967-20,980. doi:10.1029/91JE02219Google Scholar
  325. Kimura G, Ludden JN, Desrochers JP, Hori R (1993) A model of ocean-crust accretion for the Superior Province, Canada. Lithos 30:337–355Google Scholar
  326. Kisters AFM, Belcher RW, Poujol M, Dziggel A (2010) Continental growth and convergence-related arc plutonism in the Mesoarchaean: Evidence from the Barberton granitoid-greenstone terrain, South Africa. Precamb Res 178:15–26Google Scholar
  327. Kitney KE, Olivo GR, Davis DW, Desrochers J-P, Tessier A (2011) The Barry Gold Deposit, Abitibi Subprovince, Canada: A greenstone belt-hosted gold deposit coeval with Late Archean deformation and magmatism. Econ Geol 106:1129–1154Google Scholar
  328. Koch DM, Manga M (1996) Neutrally buoyant diapirs: A model for Venus coronae. Geophys Res Lett 23:225–228Google Scholar
  329. Koenig E, Aydin A (1998) Evidence for large-scale strike-slip faulting on Venus. Geology 2:551–554Google Scholar
  330. Kohlstedt DL, Mackwell SJ (2009) Strength and deformation of planetary lithospheres. In: Watters TR, Schultz, RA (eds) Planetary Tectonics, Cambridge University Press, 397–456Google Scholar
  331. Kopylova MG, Afanasiev VP, Bruce LF, Thurston PC, Ryder J (2011) Metaconglomerate preserves evidence for kimberlite, diamondiferous root and medium grade terrane of a pre-2.7 Ga Southern Superior protocraton. Earth Planet Sci Lett 312:213–225Google Scholar
  332. Krassilnikov AS, Kostama V-P, Aittola M, Guseva EN, Cherkashina OS (2012) Relationship of coronae, regional plains and rift zones on Venus. Planet Space Sci 68:56–75. doi:10.1016/j.pss.2011.11.017Google Scholar
  333. Kreissig K, Holze L, Frei R, Villa IM, Kramers JD, Kröner A, Smit CA, van Reenen DD (2001) Geochronology of the Hout River Shear Zone and the metamorphism in the Southern Marginal Zone of the Limpopo Belt, Southern Africa. Precamb Res 109:145–173Google Scholar
  334. Krogh TE, Moser DE (1994) U-Pb zircon and monazite ages from the Kapuskasing uplift: age constraints on deformation within the Ivanhoe Lake fault zone. Can J Earth Sci 31:1096–1103Google Scholar
  335. Kröner A (1985) Evolution of the Archaean continental crust. Annual Rev Earth Planet Sci 13:49–74Google Scholar
  336. Kröner A (1991) Tectonic evolution in Archaean and Proterozoic. Tectonophysics 187:393–410Google Scholar
  337. Kucinskas AB, Turcotte DL (1994) Isostatic compensation of equatorial highlands on Venus. Icarus 112:27–33Google Scholar
  338. Kuiper YD, Lin S, Böhm CO (2011) Himalayan-type escape tectonics along the Superior Boundary Zone in Manitoba, Canada. Precamb Res 187:248–262Google Scholar
  339. Kumar PS (2005) An alternative kinematic interpretation of Thetis Boundary Shear Zone, Venus: Evidence for strike-slip ductile duplexes. J Geophys Res 110:E07001. doi:10.1029/2004JE002387Google Scholar
  340. Kusky TM (1998) Tectonic setting and terrane accretion of the Archean Zimbabwe craton. Geology 26:163–166Google Scholar
  341. Kusky TM (2002) Is the Dongwanzi complex an Archean ophiolite? Response. Science 295:923. doi:10.1126/science.295.5557.923aGoogle Scholar
  342. Kusky TM, Kidd WSF (1992) Remnants of an Archean oceanic plateau, Belingwe Greenstone Belt, Zimbabwe. Geology 20:43–46Google Scholar
  343. Kusky TM, Li JH (2008) Note on the paper by Guochun Zhao, Simon A. Wilde, Sanzhong Li, Min Sun, Matthew l. Grant and Xuping Li (2007) ‘U-Pb zircon age constraints on the Dongwanzi ultramafic-mafic body, North China, confirm it is not an Archean ophiolite’. Earth Planet Sci Lett 273:227–230Google Scholar
  344. Kusky TM, Li JH, Tucker RD (2001) The Archean Dongwanzi Ophiolite Complex, North China Craton: 2.505-Billion-Year-Old Oceanic Crust and Mantle. Science 292:1142. doi:10.1126/science.1059426Google Scholar
  345. Kusky TM, Polat A (1999) Growth of granite-greenstone terranes at convergent margins, and stabilization of Archean cratons. Tectonophysics 305:43–73Google Scholar
  346. Lacroix S (1998) Géométrie Structurale et Evolution Tectonique de la Ceinture de Roches Vertes de L’Abitibi (Partie Nord-ouest): L’influence des Failles à Faible Pendage. PhD Thesis, L’Université du Québec à Chicoutimi. Accessed 3 Feb 2013
  347. Lacroix S, Sawyer EW (1995) An Archean fold—thrust belt in the northwestern Abitibi Greenstone Belt: structural and seismic evidence. Can J Earth Sci 32:97–112Google Scholar
  348. Lacroix S, Sawyer EW, Chown EH (1998) Pluton emplacement within an extensional transfer zone during dextral strike-slip faulting: an example from the late Archaean Abitibi Greenstone Belt. J Struct Geol 20:43–59Google Scholar
  349. Laflèche MR, Dupuy C, Bougault H (1992a) Geochemistry and petrogenesis of Archean mafic volcanic rocks of the southern Abitibi Belt, Québec. Precamb Res 57:207–241Google Scholar
  350. Laflèche MR, Dupuy C, Dostal J (1992b) Tholeiitic volcanic rocks of the late Archean Blake River Group, southern Abitibi greenstone belt: Origin and geodynamic implications. Can J Earth Sci 29:1448–1458Google Scholar
  351. LeCheminant AN, Heaman LM (1989) Mackenzie igneous events, Canada: Middle Proterozoic hotspot magmatism associated with ocean opening. Earth Planet Sci Lett 96:38–48Google Scholar
  352. Leclair A (2005) Géologie du nord-est de la province du Supérieur, Québec: Ministère des Ressources naturelles, Québec DV 2004–04, pp 19Google Scholar
  353. Leclair A, Berclaz A, David J, Percival JA (2001) Regional geological setting of Archean rocks in the northeastern Superior Province. Geol Assoc Can/Mineral Assoc Can Meeting, Abstract volume 26:84Google Scholar
  354. Leclerc F (2011) Géochimie et contexte tectonique du Groupe de Roy et du Complexe de Cummings dans la région de Chibougamau, Québec. PhD Thesis, INRS-ETE, Québec. Accessed 3 Feb 2013
  355. Leclerc F, Bédard JH, Harris LB, McNicoll VJ, Goulet N, Roy P, Houle P (2011) Tholeiitic to calc-alkaline cyclic volcanism in the Roy Group, Chibougamau area, Abitibi greenstone belt—Revised stratigraphy and implications for VHMS exploration. Can J Earth Sci 48:661–694Google Scholar
  356. Leclerc F, Harris LB, Bédard JH, van Breemen O, Goulet N (2012) Structural and stratigraphic controls on magmatic, volcanogenic, and syn-tectonic mineralization in the Chapais-Chibougamau Mining Camp, northeastern Abitibi, Canada. Econ Geol 107:963–989Google Scholar
  357. Lee CTA (2006) Geochemical/petrologic constraints on the origin of cratonic mantle. In: Benn K., Mareschal J-C, Condie KC (eds) Archean Geodynamics and Environments, AGU Geophys Monogr 164:89–114Google Scholar
  358. Lee CTA, Luffi P, Hoink T, Li ZXA, Lenardic A (2008) The role of serpentine in preferential craton formation in the late Archean by lithosphere underthrusting. Earth Planet Sci Lett 269:96–104Google Scholar
  359. Lee CTA, Luffi P, Chin EJ (2011) Building and destroying continental mantle. Ann Rev Earth Planet Sci 39:59–90Google Scholar
  360. Lenardic A, Moresi LN, Muhlhaus H (2003) Longevity and stability of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics. J Geophys Res, Solid Earth 108[B6], art. no. 2303. Doi:10.1029/2002JB001859Google Scholar
  361. Lesher CM, Goodwin AM, Campbell IH, Gorton MP (1986) Trace element geochemistry of ore-associated and barren, felsic metavolcanic rocks in the Superior province, Canada. Can J Earth Sci 23:222–237Google Scholar
  362. Liu Z, Bird P (2002) North America plate is driven westward by lower mantle flow. Geophys Res Lett 29(24):2164. doi:10.1029/2002GL016002Google Scholar
  363. Lin S, Percival JA, Skulski T (1996) Structural constraints on the tectonic evolution of a late Archean greenstone belt in the northeastern Superior Province, northern Quebec (Canada). Tectonophysics 265:151–167Google Scholar
  364. Lowe DR (1999) Geologic evolution of the Barberton greenstone belt and vicinity. In: MacGregor AM (1951) Some milestones in the Precambrian of Southern Africa. Proc Geol Soc South Africa 54:27–71Google Scholar
  365. Lowe DR, Byerly GR (eds) (1999) Geologic Evolution of the Barberton Greenstone Belt, South Africa, Geol Soc Am Spec Paper 329:87–312Google Scholar
  366. Luais B, Hawkesworth CJ (1994) The generation of continental crust: an integrated study of crust-forming processes in the Archaean of Zimbabwe. J Petrol 35:43–93Google Scholar
  367. Lukonin D (2008) Archean and Proterozoic Gold Deposits of the Fennoscandian Shield, MSc Thesis, Luleå University of Technology, Scholar
  368. Ludden JN, Hubert C, Gariépy C (1986) The tectonic evolution of the Abitibi greenstone belt of Canada. Geol Mag 123:153–166Google Scholar
  369. MacGregor AM (1951) Some milestones in the Pre-Cambrian of Southern Rhodesla. Trans Proc Geol Soc S Africa 54, pp xxvii–lxxiGoogle Scholar
  370. MacKenzie JM, Canil D (1999) Composition and thermal evolution of cratonic mantle beneath the central Archean Slave Province, NWT, Canada. Contrib Mineral Petrol 134:313–324Google Scholar
  371. Magee KP, Head JW (1995) The role of rifting in the generation of melt: Implications for the origin and evolution of the Lada Terra-Lavinia Planitia region of Venus. J Geophys Res 100E:1527–1552Google Scholar
  372. Marchenkov KI, Zharkov VN, Nikishin AM (1990) The stress state of Venusian crust and variations of its thickness: implication for tectonics and geodynamics. Earth Moon Planets 50–51:81–98Google Scholar
  373. Mareschal J-C, West GF (1980) A model for Archaean tectonism: numerical models of vertical tectonism in greenstone belts. Can J Earth Sci 17:60–71Google Scholar
  374. Martin H (1987) Petrogenesis of Archean trondhjemites, tonalites, and granodiorites from eastern Finland: major and trace element geochemistry. J Petrol 28:921–953Google Scholar
  375. Martin H (1993) The mechanisms of petrogenesis of the Archean continental crust—Comparison with modern processes. Lithos 30:373–388Google Scholar
  376. Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429Google Scholar
  377. Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24Google Scholar
  378. Matton G, Jébrak M (2009) The Cretaceous peri-Atlantic alkaline pulse (PAAP): Deep mantle plume origin or shallow lithospheric break-up? Tectonophysics 469:1–12Google Scholar
  379. Maurice C, David J, Bédard JH, Francis D (2009) Evidence for a widespread mafic cover sequence and its implications for continental growth in the Northeastern Superior Province. Precamb Res 168:45–65Google Scholar
  380. McBride JH, Snyder DB, England RW, Hobbs RW (1996) Dipping reflectors beneath old orogens: A Perspective from the British Caledonides. GSA Today 6:1–5Google Scholar
  381. McCall GJH (2003) A critique of the analogy between Archaean and Phanerozoic tectonics based on regional mapping of the Mesozoic-Cenozoic plate convergent zone in the Makran, Iran. Precamb Res 127:5–17Google Scholar
  382. McCuaig TC, Kerrich R (1998) P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geol Rev 12:381–453Google Scholar
  383. McCulloch MT, Wasserburg GJ (1978) Sm-Nd and Rb-Sr chronology of continental crust formation. Science 200:1003–1011Google Scholar
  384. McCurry M, Hayden K, Morse LH, Mertzman S (2008) Genesis of post-hotspot, A-type rhyolite of the Eastern Snake River Plain volcanic field by extreme fractional crystallization of olivine tholeiite. Bull Volcanol 70:14835–14855Google Scholar
  385. McGill GE (1983) The Geology of Venus. Episodes 1983:10–17Google Scholar
  386. McKenzie D, McKenzie JM, Saunders RS (1992) Dike emplacement on Venus and on Earth. J Geophys Res 97E:15,977–15,990Google Scholar
  387. Meade BJ (2007) Present-day kinematics at the India-Asia collision zone. Geology 35:81–84Google Scholar
  388. Mège D, Ernst RE (2001) Contractional effects of mantle plumes on Earth, Mars, and Venus. In: Ernst RE, Buchan KL (eds) Mantle Plumes: Their Identification Through Time, GSA Spec Paper 352:103–140Google Scholar
  389. Minnesota Minerals Coordinating Committee (2012) Explore Minnesota: Diamonds, Scholar
  390. Mocquet A, Rosenblatt P, Dehant V, Verhoeven O (2011) The deep interior of Venus, Mars, and the Earth: A brief review and the need for planetary surface-based measurements. Planet Space Sci 59:1048–1061Google Scholar
  391. Mole DR, Fiorentini ML, Théebaud N, McCuaig TC, Cassidy KF, Kirkland CL, Wingate MTD, Romano SS, Doublier MP, Belousova EA (2012) Spatio-temporal constraints on lithospheric development in the southwest—central Yilgarn Craton, Western Australia. Aust J Earth Sci 59:625–656Google Scholar
  392. Molnar P, Tapponnier P (1977) Relation of the tectonics of eastern China to the India-Eurasia collision: application of slip-line field theory to large-scale continental tectonics. Geology 5:212–21Google Scholar
  393. Morgan P (1983) Hot spot heat loss and tectonic style on Venus and in the Earth’s Archean. Lunar Planet Sci 14:515–516Google Scholar
  394. Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43Google Scholar
  395. Moser DE, Flowers RM, Hart RJ (2001) Birth of the Kaapvaal tectosphere 3.08 billion years ago. Science 291:465–468Google Scholar
  396. Moser DE, Heaman LM, Krogh TE, Hanes JA (1996) Intracrustal extension of an Archean orogen revealed using single-grain U-Pb zircon geochronology. Tectonics 15:1093–1109Google Scholar
  397. Moyen JF (2009) High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”. Lithos 112:556–574Google Scholar
  398. Moyen JF (2011) The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos 123:21–36Google Scholar
  399. Moyen JF, Champion D, Smithies RH (2010) The geochemistry of Archaean plagioclase-rich granites as a marker of source enrichment and depth of melting. Earth Environ Sci Trans Roy Soc Edin 100:35–50Google Scholar
  400. Moyen JF, Martin H, Jayananda M (2001) Multi-element geochemical modelling of crust-mantle interactions during late-Archaean crustal growth: the Closepet granite (South India). Precamb Res 112:87–105Google Scholar
  401. Moyen JF, Stevens G (2006) Experimental constraints on TTG petrogenesis: implications for Archaean geodynamics. In: Benn K, Condie K, Mareschal JC (eds) AGU Geophysical Monograph 164; Archaean Geodynamics and Environments, Chapter 10:149–175Google Scholar
  402. Moyen JF, Stevens G, Kisters A (2006) Record of mid-Archaean subduction from metamorphism in the Barberton terrain, South Africa. Nature 442:559–562. doi:10.1038/nature04972Google Scholar
  403. Moyen JF, Van Hunen J (2012) Short-term episodicity of Archaean plate tectonics. Geology 40:451–454Google Scholar
  404. Mueller A, Harris LB (1988) Application of wrench tectonic models to mineralized structures in the Golden Mile, Kalgoorlie. In: Ho SE, Groves DI (eds) Recent Advances in the Understanding of Precambrian Gold Deposits. University of Western Australia Geology Department and University Extension, University of Western Australia Publication 11:97–108Google Scholar
  405. Mueller A, Harris LB, Lungan A (1988) Structural control of greenstone-hosted gold mineralization by transcurrent shearing: a new interpretation of the Golden Mile district, Kalgoorlie, Western Australia. Ore Geol Rev 3:359–387Google Scholar
  406. Mueller WU, Daigneault R, Mortensen JK, Chown EH (1996) Archean terrane docking: upper crust collision tectonics, Abitibi greenstone belt, Quebec, Canada. Tectonophysics 265:127–150Google Scholar
  407. Mueller W, Pickett C (2005) Relative sea level change along the Slave craton coastline: characteristics of Archean continental rifting. Sedim Geol 176:97–119Google Scholar
  408. Müller N, Helbert J, Hashimoto GL, Tsang CCC, Erard S, Piccioni G, Drossart P (2008) Venus surface thermal emission at 1 micron in VIRTIS imaging observations: evidence for variation of crust and mantle differentiation conditions. J Geophys Res 113:E00B17, pp 21. doi:10.1029/2008JE003118Google Scholar
  409. Namiki N, Solomon SC (1994) Impact crater densities on volcanoes and coronae on Venus: Implications for volcanic resurfacing. Science 265:929–933Google Scholar
  410. Namur O, Charlier B, Toplis MJ, Higgins MD, Hounsell V, Liegeois JP, Vander Auwera J (2011) Differentiation of tholeiitic basalt to A-type granite in the Sept Iles layered intrusion, Canada. J Petrol 52:487–539Google Scholar
  411. NASA (undated) Venus: Facts & Figures. Accessed 3 Feb 2013
  412. Neal CR, Mahoney JJ, Kroenke LW, Duncan RA, Petterson MG (1997) The Ontong Java Plateau. In: Mahoney JJ, Coffin MF (eds) large igneous provinces: continental, Oceanic and Planetary Flood Volcanism. Am Geophys Union Geophys Monog 100, pp. 183–216Google Scholar
  413. Nikishin AM (1990) Tectonics of Venus: a review. Earth Moon Planets 50–51:101–125Google Scholar
  414. Nikolayeva OV (1990) Geochemistry of the Venera 8 material demonstrates the presence of continental crust on Venus. Earth Moon Planets 50–51:329–341Google Scholar
  415. Nimmo F, McKenzie D (1998) Volcanism and tectonics on Venus. Annu Rev Earth Planet Sci 26:23–51Google Scholar
  416. Nisbet EG, Cheadle MJ, Arndt NT, Bickle MJ (1993a) Constraining the potential temperature of the Archaean mantle—a review of the evidence from komatiites. Lithos 30:291–307Google Scholar
  417. Nisbet EG, Martin A, Bickle MJ, Orpen JL (1993b) The Ngezi Group: Komatiites, basalts and stromatolites on continental crust. In: Bickle MJ, Nisbet EG (eds) Geology of the Belingwe Greenstone Belt, Zimbabwe, Rotterdam, Netherlands, Balkema. Geol Soc Zimbabwe Spec Publ Series 2, p 121–165Google Scholar
  418. Nitescu B, Cruden AR, Bailey RC (2006) Crustal structure and implications for the tectonic evolution of the Archean Western Superior craton from forward and inverse gravity modeling. Tectonics 25, TC1009. doi:10.1029/2004TC001717Google Scholar
  419. Noltimier H, Sahagian D (1992) Tectonic style of venus: An analog to polar “icepack tectonics”. J Geodyn 16:65–79Google Scholar
  420. Nutman AP, Friend CRL (2007) Adjacent terranes with ca. 2715 and 2650 Ma high-pressure metamorphic assemblages in the Nuuk region of the North Atlantic Craton, southern West Greenland: complexities of neoarchaean collisional orogeny. Precamb Res 155:159–203Google Scholar
  421. Nutman AP, Friend CRL (2009) New 1:20,000 scale geological maps, synthesis and history of investigation of the Isua supracrustal belt and adjacent orthogneisses, southern West Greenland: a glimpse of Eoarchaean crust formation and orogeny. Precamb Res 172:189–211Google Scholar
  422. Obaje NG (2009) Geology and Mineral Resources of Nigeria, Lecture Notes in Earth Sciences 120, Springer-Verlag Berlin Heidelberg, pp 31–48Google Scholar
  423. Obrebski M, Allen RM, Xue M, Hung S-H (2010) Slab-plume interaction beneath the Pacific Northwest. Geophys Res Lett 37:L14305. doi:10.1029/2010GL043489Google Scholar
  424. O’Donovan G, Armitage M (undated) Technical Report on Norplat Limited Exploration Properties in the Kola Peninsula, SRK Consulting. In: Ovoca Resources PLC, Admission to trading on AIM. Accessed 1 Feb 2013
  425. Olsson JR, Söderlund U, Hamilton MA, Klausen MB, George R, Helffrich GR (2011) A late Archaean radiating dyke swarm as possible clue to the origin of the Bushveld Complex. Nature Geosci 4:865–869Google Scholar
  426. O’Reilly SY, Zhang M, Griffin WL, Begg G, Hronsky J (2009) Ultradeep continental roots and their oceanic remnants: A solution to the geochemical “mantle reservoir” problem? Lithos 211:1043–1054Google Scholar
  427. Oxburgh R (1972) Flake tectonics and continental collisions. Nature 239:202–204. doi:10.1038/239202a0Google Scholar
  428. Parfitt EA, Head JW (1993) Buffered and unbuffered dyke emplacement on Earth and Venus: Implictions for magma reservoir size, depth and rate of magma replenishment. Earth Moon Planets 61:249–261Google Scholar
  429. Parman SW, Grove TL, Kelley KA, Plank T (2011) Along-arc variations in the pre-eruptive H2O contents of Mariana arc magmas inferred from fractionation paths. J Petrol 52:257–278Google Scholar
  430. Pauer M (2004) The Gravity Field of Venus and Its Relationship to the Dynamic Processes in the Mantle. Research report to the Czech National Grant No. 205/02/1306, diploma thesis, Charles University, Prague, Scholar
  431. Peacock SM, Rushmer T, Thompson AB (1994) Partial melting of subducting oceanic crust. Earth Planet Sci Lett 121:227–244Google Scholar
  432. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48Google Scholar
  433. Percival JA, Bursnall JT, Moser DE, Shaw DM (1991) Site survey for the Canadian continental drilling program’s pilot project in the Kapuskasing Uplift; Ontario Geol Surv Ontario. Open File Report 5790:34 ppGoogle Scholar
  434. Percival JA, Mortensen JK (2002) Water-deficient calc-alkaline plutonic rocks of northeastern Superior Province, Canada: Significance of charnockitic magmatism. J Petrol 43:1617–1650Google Scholar
  435. Percival JA, McNicoll V, Brown JL, Whalen JB (2004) Convergent margin tectonics, central Wabigoon subprovince, Superior Province, Canada. Precamb Res 132:213–244Google Scholar
  436. Percival JA, West GF (1994) The Kapuskasing uplift: a geological and geophysical synthesis. Can J Earth Sci 31:1256–1286Google Scholar
  437. Percival JA, Skulski T, Sanborn-Barrie M, Stott GM, Leclair AD, Corkery MT, Boily M, (2012) Geology and tectonic evolution of the Superior Province, Canada. In: Percival JA, Cook FA, Clowes RM (eds) Tectonic Styles in Canada: The Lithoprobe Perspective. Geol Assoc Canada Spec Paper 49:321–378Google Scholar
  438. Percival JA, western SNATMAPworkinggroup (2004) Orogenic framework for the Superior Province: Dissection of the “Kenoran Orogeny”. The LITHOPROBE Celebratory Conference: From Parameters to Processes—Revealing the Evolution of a Continent. Accessed 3 Feb 2013
  439. Peschler AP, Benn K, Roest WR (2006) Gold-bearing fault zones related to Late Archean orogenic folding of upper and middle crust in the Abitibi granite-greenstone belt, Ontario. Precamb Res 151:143–159Google Scholar
  440. Petford N, Atherton M (1996) Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. J Petrol 37:1491–1521Google Scholar
  441. Petford N, Gallagher K (2001) Partial melting of mafic (Amphibolitic) lower crust by periodic influx of basaltic magma. Earth Planet Sci Lett 193:483–499Google Scholar
  442. Petters S (1991) Regional Geology of Africa, Lect Notes Earth Sci 40, Springer-Verlag, Berlin Heidelberg, pp 722Google Scholar
  443. Peucat J-J, Jayananda M, Chardon D, Capdevila R, Fanning CM, Paquette J-L (2013) The lower crust of the Dharwar Craton, Southern India: Patchwork of Archean granulitic domains. Precamb Res 227:4–28. doi:10.1016/j.precamres.2012.06.009,Google Scholar
  444. Phillips RJ, Hansen VL (1994) Tectonic and magmatic evolution of Venus. Annu Rev Earth Planet Sci 22:597–654Google Scholar
  445. Phillips RJ, Hansen VL (1998) Geological evolution of Venus: Rises, plains, plumes, and plateaus. Science 279(5356):1492–1497Google Scholar
  446. Phillips RJ, Grimm RT, Makin MC (1991) Hot-spot evolution and the global tectonics of Venus. Science 252:651–658Google Scholar
  447. Phillips RJ, Kaula WM, McGill GE, Malin MC (1981) Tectonics and evolution of Venus. Science 212:879–887Google Scholar
  448. Pilote P, Guha J, Daigneault R, Robert F, Golightly JP (1990) Contexte structural et minéralisations aurifères des gîtes Casa-Berardi, Abitibi, Québec. Can J Earth Sci 27:1672–1685Google Scholar
  449. Pinheiro RVL, Holdsworth RE (1997) Reactivation of Archaean strike-slip fault systems, Amazon region, Brazil. J Geol Soc London 154:99–104Google Scholar
  450. Pirajno F (2007) Ancient to Modern Earth: The Role of Mantle Plumes in the Making of Continental Crust. Developments in Precambrian Geology 15:1037–1064Google Scholar
  451. Pitcher WS (1985) Magmatism at a plate edge: the Peruvian Andes. Glasgow: Blackie Academic & professional, pp 328Google Scholar
  452. Pohn HA, Schaber GG (1992) Indenter type deformation on Venus as evidence for large-scale tectonic slip, and multiple strike-slip events as a mechanism for producing tesselated terrain. Lunar Planet Sci 23:1095. Accessed 3 Feb 2013Google Scholar
  453. Polat A, Kerrich R (2000) Archean greenstone belt volcanism and the continental growth–mantle evolution connection: constraints from Th–U–Nb–LREE systematics of the 2.7 Ga Wawa Subprovince, Superior Province, Canada. Earth Planet Sci Lett 175:41–54Google Scholar
  454. Polat A, Kerrich R (2001) Geodynamic processes, continental growth, and mantle evolution recorded in late Archean greenstone belts of the southern Superior Province, Canada. Precamb Res 112:5–25Google Scholar
  455. Polat A, Kerrich R, Wyman DA (1999) Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: trace element and Nd isotope evidence for a heterogeneous mantle. Precamb Res 94:139–173Google Scholar
  456. Poudjom-Djomani YH, O’Reilly SY, Griffin WL, Morgan P (2001) The density structure of subcontinental lithosphere through time. Earth Planet Sci Lett 184:605–621Google Scholar
  457. Poulsen KH, Card KD, Franklin JM (1992) Archean tectonic and metallogenic evolution of the Superior Province of the Canadian Shield. Precamb Res 58:25–54Google Scholar
  458. Pronin AA, Stofan ER (1990) Coronae on Venus: Morphology and distribution. Icarus 87:452–474Google Scholar
  459. Puchtel IS, Hofmann AW, Mezger K, Jochum KP, Shchipansky AA, Samsonov AV (1998) Oceanic plateau model for continental crustal growth in the Archaean: A case study from the Kostomuksha greenstone belt, NW Baltic Shield. Earth Planet Sci Lett 155:57–74Google Scholar
  460. Puchtel IS, Walker RJ, Anhaeusser CR, Gruau G (2009) Re-Os isotope systematics and HSE abundances of the 3.5 Ga Schapenburg komatiites, South Africa: hydrous melting or prolonged survival of primordial heterogeneities in the mantle? Chem Geol 262:355–369Google Scholar
  461. Pysklywec RN, Cruden AR (2004) Coupled crust-mantle dynamics and intraplate tectonics: two-dimensional numerical and three-dimensional analogue modeling, Geochem Geophys Geosyst 5, Q10003. doi:10.1029/2004GC000748Google Scholar
  462. Pysklywec RN, Gogus O, Percival J, Cruden AR, Beaumont C (2010) Insights from geodynamical modeling on possible fates of continental mantle lithosphere: collision, removal, and overturn. Can J Earth Sci 47:541–563Google Scholar
  463. Raharimahefa T, Kusky TM (2006) Structural and remote sensing studies of the southern Betsimisaraka Suture, Madagascar. Gondwana Res 10:186–197Google Scholar
  464. Ratschbacher L, Frisch W, Linzer H-G, Merle O (1991a) Lateral extrusion in the eastern Alps, Part 2: Structural analysis. Tectonics 10:257–271. doi:10.1029/90TC02623.Google Scholar
  465. Ratschbacher L, Merle O, Davy P, Cobbold P (1991b) Lateral extrusion in the eastern Alps, Part 1: Boundary conditions and experiments scaled for gravity. Tectonics 10:245–256. doi:10.1029/90TC02622Google Scholar
  466. Ravenelle J-F, Dubé B, Malo M, McNicoll V, Nadeau L, Simoneau J (2010) Insights on the geology of the world-class Roberto gold deposit, Éléonore property, James Bay area, Quebec. Geological Survey of Canada, Current Research 2010–1, 26 p.Google Scholar
  467. Reston TJ (1990) Mantle shear zones and the evolution of the northern North Sea basin. Geology 18:272–275Google Scholar
  468. Rey PF, Houseman G (2006) Lithospheric scale gravitational flow: the impact of body forces on orogenic processes from Archaean to Phanerozoic. In: Buiter SJH, Schreurs G (eds) Analogue and Numerical Modelling of Crustal-Scale Processes. Geol Soc London Spec Pub 253:153–167Google Scholar
  469. Rey PF, Philippot P, Thébaud N (2003) Contribution of mantle plumes, crustal thickening and greenstone blanketing to the 2.75-2.65 Ga global crisis. Precamb Res 127:43–60Google Scholar
  470. Richardson WP, Okal EA, Van der Lee S (2000) Rayleigh-wave tomography of the Ontong-Java Plateau. Phys Earth Planet Int 118:29–51Google Scholar
  471. Ridley JR, Vearncombe JR, Jelsma HA (1997) Relations between greenstone belts and associated granitoids. In: de Wit MJ, Ashwal LD (eds) Greenstone Belts. Oxford Science Publications, Oxford, pp 376–397Google Scholar
  472. Riedel W (1929) Zur Mechanik Geologischer Brucherscheinungen. Zentral-blatt fur Mineralogie, Geolo Paleontol B:354–368Google Scholar
  473. Rino S, Komiya T, Windley BF, Katayama I, Motoki A, Hirata T (2004) Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian. Phys Earth Planet Int 146:369–394Google Scholar
  474. Rivard B, Corriveau L, Harris LB (1999) Structural reconnaissance of a deep crustal orogen using RADARSAT and Landsat satellite imagery and airborne geophysics. Can J Remote Sensing 25:258–267Google Scholar
  475. Robert F (1989) Internal structure of the Cadillac tectonic zone southeast of Val d’Or, Abitibi greenstone belt, Quebec. Can J Earth Sci 26:2661–2675Google Scholar
  476. Robert F (2001) Syenite-associated disseminated gold deposits in the Abitibi greenstone belt, Canada. Mineral Deposita 36:503–516Google Scholar
  477. Robert F, Brommecker R, Bourne BT, Dobak PJ, McEwan CJ, Rowe RR, Zhou X (2007) Models and Exploration Methods for Major Gold Deposit Types. In: Milkereit B (ed) Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 691–711Google Scholar
  478. Robert F, Poulsen KH, Cassidy KF, Hodgson CJ (2005) Gold Metallogeny of the Superior and Yilgarn Cratons. Econo Geolo 100th Anniversary Volume:1001–1034Google Scholar
  479. Robin CMI, Bailey RC (2009) Simultaneous generation of Archean crust and subcratonic roots by vertical tectonics. Geology 37:523–526Google Scholar
  480. Rock NMS, Duller P, Haszeldine RS, Groves DI (1987) Lamprophyres as potential gold exploration targets: some preliminary observations and speculations. In: Ho SE, Groves DI (eds) Recent Advances in Understanding Precambrian Gold Deposits, Geology Dept. and University Extension, Univ WA Publ 11:271–286Google Scholar
  481. Rock NMS, Groves DI (1988) Can lamprophyres resolve the genetic controversy over mesothermal gold deposits? Geology 16:538–541Google Scholar
  482. Rondenay S, Bostock MG, Hearn TM, White DJ, Ellis R (2000). Lithospheric assembly and modification of the SE Canadian Shield: Abitibi-Grenville teleseismic experiment. J Geophys Res 105(B6): doi:10.1029/2000JB900022Google Scholar
  483. Rondenay S, Bostock MG, Hearn TM, White DJ, Wu H, Sénéchal G, Ji S, Mareschal M (2002) Teleseismic studies of the lithosphere below the Abitibi—Grenville Lithoprobe transect. Can J Earth Sci 37:415–426Google Scholar
  484. Roering C, van Reenen DD, Smit CA, Barton Jr JM, de Beer JH, de Wit MJ, Stettler EH, van Schalkwyk JF, Stevens G, Pretorius S (1992) Tectonic model for the evolution of the Limpopo Belt. Precamb Res 55:539–552Google Scholar
  485. Rollinson H (2007) Early Earth Systems, A Geochemical Approach. Blackwell Publishing Oxford, pp 285Google Scholar
  486. Romeo I, Turcotte DL (2008) Pulsating continents on Venus: an explanation for crustal plateaus and tessera terrains. Earth Planet Sci Lett 276:85–97Google Scholar
  487. Romeo I, Capote R (2011) Tectonic evolution of Ovda Regio: An example of highly deformed continental crust on Venus? Planetary Space Sci 59:1428–1445Google Scholar
  488. Romeo I, Capote R, Anguita F (2005) Tectonic and kinematic study of a strike-slip zone along the southern margin of Central Ovda Regio, Venus: Geodynamical implications for crustal plateaux formation and evolution. Icarus 175:320–334Google Scholar
  489. Ross PS, Goutier J, Mercier-Langevin P, Dubé B (2011a) Basaltic to andesitic volcaniclastic rocks in the Blake River Group, Abitibi Greenstone Belt: 1. Mode of emplacement in three areas. Can J Earth Sci 48:728–756Google Scholar
  490. Ross PS, McNicoll V, Goutier J, Mercier-Langevin P, Dubé B (2011b) Basaltic to andesitic volcaniclastic rocks in the Blake River Group, Abitibi Greenstone Belt: 2. Origin, geochemistry, and geochronology. Can J Earth Sci 48:757–777Google Scholar
  491. Sagan C, Mullen G (1972) Earth and Mars: evolution of atmospheres and surface temperatures. Science 177:52–56Google Scholar
  492. Sandwell DT, Schubert G (1992) Evidence for retrograde lithospheric subduction on Venus In: Papers presented to the international colloquium on Venus. LPI Contribution 789. Lunar and Planetary Institute, United States, pp 97–99Google Scholar
  493. Sandiford M, Van Kranendonk M, Bodorkos S (2004) Conductive incubation and the origin of granite-greenstone dome and keel structure: the Eastern Pilbara Craton, Australia. Tectonics 23, C1009. doi:10.1029/2002TC001452Google Scholar
  494. Santosh M, Zhao D, Kusky Y (2010) Mantle dynamics of the Paleoproterozoic North China Craton: A perspective based on seismic tomography. J Geodyn 49:39–53Google Scholar
  495. Saunders RS et al (1992) Magellan Mission Summary. J Geophys Res 97(E8):13,067–13,090. doi:10.1029/92JE01397Google Scholar
  496. Schaber GG, Kozak RC (1990) Geologic/Geomorphic and Structure Maps of the Northern Quarter of Venus. US Geol Surv Open-File Report 90–24Google Scholar
  497. Schaber GG, Strom RG, Moore HJ, Soderblom LA, Kirk RL, Chadwick DJ, Dawson DD, Gaddis LR, Boyce JM, Russel J (1992) Geology and distribution of impact craters on Venus: What are they telling us? J Geophys Res 97:13,257–13,301Google Scholar
  498. Schoene B, de Wit MJ, Bowring SA (2008) Mesoarchean assembly and stabilization of the eastern Kaapvaal craton: a structural-thermochronological perspective. Tectonics 27, TC5010. doi:10.1029/2008TC002267Google Scholar
  499. Schubert G, Moore WB, Sandwell DT (1994) Gravity over Coronae and Chasmata on Venus. Icarus 112:130–146Google Scholar
  500. Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the Earth and planets. Cambridge University PressGoogle Scholar
  501. Shervais JW (2006) Plumes, plateaux, and the significance of subduction-related accretionary complexes in early Earth processes. In: Reimold U, Gibson R (eds) Early Earth Processes, GSA Special Paper 405:173–192Google Scholar
  502. Simard M, Labbé J-Y, Maurice C, Lacoste P, Leclerc A, Boily M (2008) Synthèse du nord-est de la Province du Supérieur. Géologie Québec, MRNF Québec, MM 2008–02, pp 196Google Scholar
  503. Simoneau J, Prud’homme N, Bourassa Y (2007) Mineral resource estimation Eleonore gold project, Quebec. Report Prepared for Goldcorp Inc., SRK Consulting (Canada) Inc., Scholar
  504. Simons M, Hager BH, Solomon SC (1994) Global Variations in the geoid/topography admittance of Venus. Science 264:798–803Google Scholar
  505. Sizova E, Gerya T, Brown M, Perchuk LL (2010) Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116:209–229Google Scholar
  506. Slabunov AI, et al (2006) The Archean of the Baltic Shield: Geology, geochronology, and geodynamic settings. Geotectonics 40:409–433Google Scholar
  507. Sleep NH (2000) Evolution of the mode of convection within terrestrial planets. J Geophys Res 105(E7):17563–17578Google Scholar
  508. Sleep NH, Windley BF (1982) Archean plate tectonics: constraints and inferences. J Geol 90:363–379Google Scholar
  509. Smithies RH (2000) The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182:115–125Google Scholar
  510. Smithies RH, Champion DC, Van Kranendonk MJ (2009) Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth Planet Sci Lett 281:298–306Google Scholar
  511. Smithies RH, Champion DC, Van Kranendonk MJ, Howard HM, Hickman AH (2005a) Modern style subduction processes in the Mesoarchean: geochemical evidence from the 3.12 Ga Whundo intraoceanic arc. Earth Planet Sci Lett 231:221–237Google Scholar
  512. Smithies RH, Van Kranendonk MJ, Champion DC (2005b) It started with a plume—early Archaean basaltic proto-continental crust. Earth Planet Sci Lett 238:284–297Google Scholar
  513. Smithies RH, Van Kranendonk MJ, Champion DC (2007) The Mesoarchean emergence of modern-style subduction. Gondwana Res 11:50–68Google Scholar
  514. Smithies RH, Witt WK (1997) Distinct basement terranes identified from granite geochemistry in late Archaean granite-greenstones, Yilgarn Craton, Western Australia. Precamb Res 83:185–201Google Scholar
  515. Smrekar SE, Elkins-Tanton L, Leitner JJ, Lenardic A, Mackwell S, Moresi L, Sotin C, Stofan ER (2007) Tectonic and thermal evolution of Venus and the role of volatiles: Implications for understanding the terrestrial planets. In: Esposito LW, Stofan ER, Cravens TE (eds) Exploring Venus as a Terrestrial Planet, AGU Geophys Monogr Ser 176:45–71Google Scholar
  516. Smrekar SE, Hoogenboom T, Stofan ER, Martin P (2010) Gravity analysis of Parga and Hecate chasmata: implications for rift and corona formation. J Geophys Res 115:E07010. doi:10.1029/2009JE003435Google Scholar
  517. Smrekar SE, Parmentier EM (1996) The interaction of mantle plumes with surface thermal and chemical boundary layers: applications to hotspots on Venus. J Geophys Res 101:5397–410Google Scholar
  518. Smrekar SE, Stofan ER (1997) Corona formation and heat loss on Venus by coupled upwelling and delamination. Science 277:1289–1294Google Scholar
  519. Smrekar SE, Sotin C (2012) Constraints on mantle plumes on Venus: Implications for volatile history. Icarus 217:510–523Google Scholar
  520. Sobolev SV, Sobolev AV, Kuzmin DV, Krivolutskaya NA, Petrunin AG, Arndt NT, Radko VA, Vasiliev YR (2011) Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477:312–316Google Scholar
  521. Sokolov SYu, Trifonov VG (2012) Role of the asthenosphere in transfer and deformation of the lithosphere: The Ethiopian–Afar superplume and the Alpine–Himalayan belt. Geotectonics 46:171–184Google Scholar
  522. Sol S, Thomson CJ, Kendall J-M, White D, VanDecar JC, Asudeh I (2002) Seismic tomographic images of the cratonic upper mantle beneath the Western Superior Province of the Canadian Shield—a remnant Archean slab? Phys Earth Planet Int 134:53–69Google Scholar
  523. Solomon SC, Head JW (1982) Mechanisms for lithospheric heat transport on Venus: Implications for tectonic style and volcanism. J Geophys Res 87:9236–9246Google Scholar
  524. Solomatov VS, Moresi L-N (1996) Stagnant lid convection on Venus. J Geophys Res 101(E2):4737–4753Google Scholar
  525. Solomatov VS, Moresi LN (1997) Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets. Geophys Res Lett 24:1907–1910Google Scholar
  526. Solomatov VS, Moresi LN (2000) Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets. J Geophys Res—Solid Earth 105:21795–21817Google Scholar
  527. Solomon SC, Head JW, Kaula WM, McKenzie D, Parsons B, Phillips RJ, Schubert G, Talwani M (1991) Venus tectonics—initial analysis from Magellan. Science 252:297–312Google Scholar
  528. Solomon SC, Smrekar SE, Duane I, Bindschadler L, Grimm RE, Kaula WM, McGill GE, Phillips RJ, Saunders RS, Schubert G, Squyres SW, Stofan ER (1992) Venus tectonics: An overview of magellan observations. J Geophys Res 97:13,199–13,255Google Scholar
  529. Sorohtin OG, Ushakov SA (2002) Природа Тектонической Активности Земли, Глава 6, Развитие Земли) (Tectonic activity nature of the Earth. Chapter 6, Development of the Earth), Moscow State University Press, 144–199. Accessed 3 Feb 2013
  530. Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302Google Scholar
  531. Spencer JE (2001) Possible giant metamorphic core complex at the center of Artemis Corona, Venus. GSA Bull 113:333–345Google Scholar
  532. Spiricheva VV, Nikishin AM (1990) Comparison of tessera grabens on Venus and grabens of Baikal region and Basin and Range Province on Earth. Abst Lunar Planet Sci Confer 21:1186–1187Google Scholar
  533. Sproule RA, Lesher CM, Ayer JA, Thurston PC, Herzberg CT (2002) Spatial and temporal variations in the geochemistry of komatiites and komatiitic basalts in the Abitibi greenstone belt. Precamb Res 115:153–186Google Scholar
  534. Squyres SW, Janes DM, Baer G, Bindschadler DL, Schubert G, Sharpton VL, Stofan ER (1992) The morphology and evolution of coronae on Venus. J Geophys Res E 97:13,611–13,634Google Scholar
  535. Stachel T, Banas A, Muehlenbachs K, Kurszlaukis S, Walker EC (2006) Archean diamonds from Wawa (Canada): samples from deep cratonic roots predating cratonization of the Superior Province. Contrib Mineral Petrol 151:737–750Google Scholar
  536. Stanistreet IG, T McCarthyTS, Charlesworth EG, Myers RE, Armstrong RA (1986) Pre-transvaal wrench tectonics along the northern margin of the witwatersrand basin, South Africa. Tectonophysics 131:53–74Google Scholar
  537. Stein M, Hofmann AW (1994) Mantle plumes and episodic crustal growth. Nature 372:63–68Google Scholar
  538. Stern RJ (2004) Subduction initiation: spontaneous and induced. Earth Planet Sci Lett 226:275–292Google Scholar
  539. Stern RJ (2005) Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology 33:557–560Google Scholar
  540. Stern RJ (2008) Modern-type plate tectonics began in Neoproterozoic time: an alternative interpretation of Earth’s tectonic history. In: Condie KC, Pease V (eds) When Did Plate Tectonics begin on Planet Earth? Geol Soc Am Spec Paper 440, pp 265–280Google Scholar
  541. Stern RA, Hanson GN (1991) Archean high-Mg granodiorite: a derivative of light rare earth element-enriched monzodiorite of mantle origin. J Petrol 32:201–238Google Scholar
  542. Stern RA, Percival JA, Mortensen JK (1994) Geochemical evolution of the Minto block: a 2.7 Ga continental magmatic arc built on the Superior proto-craton. Precamb Res 65:115–153Google Scholar
  543. Stevenson R, Henry P, Gariépy C (1999) Assimilation-fractional crystallization origin of Archean Sanukitoid Suites: Western Superior Province, Canada. Precamb Res 96:83–99Google Scholar
  544. Stevenson RK, O’Neil J, Machado N (2004) Isotope (Nd and Sr) and Geochronology studies of Quebec Kimberlites and Lamprophyres. Rapport Final, Sous-projet SC8b, DIVEX. Accessed 3 Feb 2013Google Scholar
  545. Stofan ER, Senske DA, Michaels G (1993) Tectonic Features in Magellan Data, Chapter 8, Guide to Magellan Image Interpretation, JPL-93-94, NASA, pp 20. Accessed 1 Feb 2013
  546. Stofan ER, Sharpton VL, Schubert G, Baer G, Bindschadler DL, Janes DM, Squyres SW (1992) Global distribution and characteristics of coronae and related features on Venus: Implications for origin and relation to mantle processes. J Geophys Res 97E:13,347–13,378Google Scholar
  547. Stott G, Mueller W (2009) Superior Province: the nature and evolution of the Archean continental lithosphere. Precamb Res 168:1–3Google Scholar
  548. Stott GM, Corkery T, Leclair A, Boily M, Percival J (2007) A revised terrane map for the Superior Province as interpreted from aeromagnetic data; Institute on Lake Superior Geology Proceedings, 53rd Annual Meeting, Lutsen, MN, v.53, part 1, pp 74–75Google Scholar
  549. Sylvester AG (1988) Strike-slip faults. Geol Soc Am Bull 100:1666–1703Google Scholar
  550. Suppe J, Connors C (1992) Critical-taper wedge mechanics of fold-and-thrust belts on Venus: initial results from Magellan. J Geophys Res 97:3545–13561Google Scholar
  551. Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Int 183:73–90. doi:10.1016/j.pepi.2010.02.004Google Scholar
  552. Tackley PJ (2000a) Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations, 1, Pseudoplastic yielding. Geochem Geophys Geosyst 1. doi:10.1029/2000GC000036Google Scholar
  553. Tackley PJ (2000b). Self-consistent generation of tectonic plates in time†dependent, three-dimensional mantle convection simulations 2. Strain weakening and asthenosphere Geochem Geophys Geosyst 1, 1026. doi:10.1029/2000GC000043Google Scholar
  554. Tapponnier P, Molnar P (1976) Slip-line field theory and large-scale continental tectonics. Nature 264:319–324Google Scholar
  555. Tapponnier P, Peltzer G, Le Dain A-Y, Armijo R, Cobbold PR (1982) Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology 10:611–616Google Scholar
  556. Tchalenko JS (1968) The evolution of kink-bands and the development of compression textures in sheared clays. Tectonophysics 6:159–174Google Scholar
  557. Tchalenko JS (1970) Similarities between shear zones of different magnitudes. Geol Soc Am Bull 81:1625–1640Google Scholar
  558. Taylor SR, McLennan SM (1986) The geochemical composition of the Archaean crust. In: Dawson JB, Carswell DA, Hall J, Wedepohl KH (eds) The Nature of the Lower Continental Crust, Geol Soc London Spec Publ 24:173–178Google Scholar
  559. Telmat H, Mareschal J-C, Gariépy C, David J, Antonuk CN (2000) Crustal models of the eastern Superior Province, Quebec, derived from new gravity data. Can J Earth Sci 37:385–397Google Scholar
  560. Tessalina SG, Bourdon B, Van Kranendonk MJ, Birk J-L, Philippot P (2010) Influence of Hadean crust evident in basalts and cherts from the Pilbara Craton. Nat Geosci 3:214–217Google Scholar
  561. Thébaud N, Rey P (2013) Archean gravity-driven tectonics on hot and flooded continents controls on long-lived hydrothermal systems away from continental margins. Precam Res. 229:93–104 doi:10.1016/j.precamres.2012.03.001Google Scholar
  562. Theriault R (2002) Carte Géologique du Québec, MRNF Québec, DV 2002–06Google Scholar
  563. Thurston PC (2002) Autochthonous development of Superior Province greenstone belts? Precamb Res 115:11–36Google Scholar
  564. Thurston P, Ayer JA, Goutier J, Hamilton MA (2008) Depositional gaps in Abitibi greenstone belt stratigraphy: a key to exploration for syngenetic mineralization. Econ Geol 103:1097–1134Google Scholar
  565. Thurston PC, Ayres LD (1986) Volcanological constraints on Archaean tectonics. Lunar and Planetary Inst. Workshop on the Tectonic Evolution of Greenstone Belts, 126–128Google Scholar
  566. Thurston PC, Chivers KM (1990) Secular variation in greenstone sequence development emphasizing Superior Province, Canada. Precamb Res 46:21–58Google Scholar
  567. Thurston PC, Fryer BJ (1983) The geochemistry of repetitive cyclical volcanism from basalt through rhyolite in the Uchi-Confederation greenstone belt, Canada. Contrib Mineral Petrol 83:204–226Google Scholar
  568. Tomlinson KY, Condie KC (2001) Archean mantle plumes: evidence from greenstone belt geochemistry. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geol Soc Am Spec Paper 352, pp 341–357Google Scholar
  569. Tomlinson KY, Hughes DJ, Thurston PC, Hall RP (1999) Plume magmatism and crustal growth at 2.9 to 3.0 Ga in the Steep Rock and Lumby Lake area, Western Superior Province. Lithos 46:103–136Google Scholar
  570. Tomlinson KY, Stott GM, Percival JA, Stone D (2004) Basement terrane correlations and crustal recycling in the western Superior Province: Nd isotopic character of granitoid and felsic volcanic rocks in the Wabigoon subprovince, N.Ontario, Canada. Precamb Res 132:245–274Google Scholar
  571. Treiman AH (2007) Geochemistry of Venus’ surface: Current limitations as future opportunities. In: Esposito LW, Stofan ER, Cravens TE (eds) Exploring Venus as a Terrestrial Planet, Geophys Monogr Ser 176, AGU, Washington, DC. Accessed 3 Feb 2013
  572. Treloar PJ, Coward MP, Nigel BW, Harris NBW (1992) Himalayan-Tibetan analogies for the evolution of the Zimbabwe Craton and Limpopo Belt. Precamb Res 55:571–587Google Scholar
  573. Tuckwell GW, Ghail RC (2003) A 400-km-scale strike-slip zone near the boundary of Thetis Regio, Venus. Earth Planet Sci Lett 211:45–55Google Scholar
  574. Turcotte DL (1996) Magellan and comparative planetology. J Geophys Res 101:4765–4773Google Scholar
  575. Turcotte DL, Morein G, Roberts D, Malamud BD (1999) Catastrophic resurfacing and episodic subduction on Venus. Icarus 139:49–54Google Scholar
  576. Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150:561–580Google Scholar
  577. Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30:351–354Google Scholar
  578. van der Velden AJ, Cook FA (2005) Relict subduction zones in Canada. J Geophys Res 110, B08403. doi:10.1029/2004JB003333Google Scholar
  579. van der Velden AJ, Cook FA, Drummond BJ, Goleby BR (2006) Reflections of the neoarchean: a global perspective. Archean geodynamics and environments. Geophys Monogr Ser 164:255–265Google Scholar
  580. van Hunen J, Moyen J-F (2012) Archean subduction: fact or fiction? Ann Rev Earth Planet Sci 40:195–219. doi:10.1146/annurev-earth-042711-105255Google Scholar
  581. van Hunen J, van den Berg AP (2008) Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103:217–235Google Scholar
  582. van Keken PE, Kiefer B, Peacock M (2002) High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem Geophys Geosyst 3– art. no. 1056 doi:10.129/2001GC000256Google Scholar
  583. Van Kranendonk MJ (2010) Two types of Archean continental crust: Plume and plate tectonics on early Earth. Am J Sci 310:1187–1209. Doi:10.2475/10.2010.01Google Scholar
  584. Van Kranendonk MJ (2011a) Cool greenstone drips and the role of partial convective overturn in Barberton Greenstone Belt evolution. J Afr Earth Sci 60:346–352Google Scholar
  585. Van Kranendonk MJ (2011b) No arc-accretion tectonics in Yilgarn Craton. West Australian Geologist (WAG) 48:3–4. Accessed 3 Feb 2013
  586. Van Kranendonk MJ, Hickman AH, Smithies RH, Nelson DR, Pike G (2002) Geology and tectonic evolution of the Archean North Pilbara terrain, Pilbara Craton, Western Australia. Econ Geol 97:695–732Google Scholar
  587. Van Kranendonk MJ, Collins WJ, Hickman A, Pawley MJ (2004) Critical tests of vertical vs. horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia. Precamb Res 131:173–211Google Scholar
  588. Van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC (2007a) Review: secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19:1–38Google Scholar
  589. Van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC (2007b) The East Pilbara Terrane of the Pilbara Craton, Western Australia: formation of a continental nucleus through repeated plume magmatism. In: Van Kranendonk M, Smithies RH, Bennett V (eds) Earth’s Oldest rocks, Developments in Precambrian Geology. Elsevier, Amsterdam, pp 307–337Google Scholar
  590. Van Schmus WR (1992) Tectonic setting of the Midcontinent Rift system. Tectonophysics 213:1–15Google Scholar
  591. Van Thienen P, van den Berg AP, Vlaar NJ (2004a) On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394:111–124Google Scholar
  592. Van Thienen P, van den Berg AP, Vlaar NJ (2004b) Production and recycling of oceanic crust in the early Earth. Tectonophysics 386:41–65Google Scholar
  593. Van Thienen P, Vlaar NJ, van den Berg AP (2005) Assessment of the cooling capacity of plate tectonics and flood volcanism in the evolution of Earth, Mars and Venus. Phys Earth Planet Int 150:287–315Google Scholar
  594. Vezolainen AV (2003) Dynamics of equatorial highlands on venus. PhD thesis, New Mexico State University. Accessed 3 Feb 2013Google Scholar
  595. Villemaire M, Darbyshire FA, Bastow ID (2012) P-wave tomography of eastern North America: evidence for mantle evolution from Archean to Phanerozoic, and modification during subsequent hot spot tectonism. J Geophys Res Solid Earth 117(12). doi:10.1029/2012JB009639Google Scholar
  596. Vlaar NJ, van Keken PE, van den Berg AP (1994) Cooling of the Earth in the Archaean: consequences of pressure-release melting in a hotter mantle. Earth Planet Sci Lett 121:1–18Google Scholar
  597. Weihed P, Arndt N, Billström K, Duchesne J-C, Eilu P, Martinsson O, Papunen H, Lahtinen R (2005) 8: Precambrian geodynamics and ore formation: The Fennoscandian Shield. Ore Geol Rev 27:273–322Google Scholar
  598. Weijermars R (undated) Structural Geology & Map Interpretation, Chapter 16: Remote-sensing maps, TU Delft OpenCourseWare,
  599. Weertman J (1979) Height of mountains on Venus and the creep properties of rock. Phys Earth Planet Int 19:197–207Google Scholar
  600. Whalen JB, Percival JA, McNicoll VJ, Longstaffe FJ (2004) Geochemical and isotopic (Nd-O) evidence bearing on the origin of late- to post-orogenic high-K granitoid rocks in the Western Superior Province: implications for Late Archean tectonomagmatic processes. Precamb Res 132:303–326Google Scholar
  601. White DJ, Musacchio G, Helmstaedt HH, Harrap RM, Thurston PC, Velden A van der, Hall K (2003) Images of a lower-crustal oceanic slab: direct evidence for tectonic accretion in the Archean western Superior province. Geology 31:997–1000Google Scholar
  602. Whitehouse MJ, Kalsbeek F, Nutman AP (1998) Crustal growth and crustal recycling in the Nagssugtoqidian orogen of West Greenland: constraints from radiogenic isotope systematics and U-Pb zircon geochronology. Precamb Res 91:365–381Google Scholar
  603. Whitney JA (1988) The origin of granite: the role and source of water in the evolution of granitic magmas. Geol Soc Am Bull 100:1886–1897Google Scholar
  604. Whittington AG, Hofmeister AM, Nabelek PI (2009) Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature 458:319–321Google Scholar
  605. Wilcox RE, Harding TP, Seely DR (1973) Basic wrench tectonics. Am Assoc Pet Geol Bull 57:74–96Google Scholar
  606. Wilkinson L, Cruden AR, Krogh TE (1999) Timing and kinematics of post-Timiskaming deformation within the Larder Lake—Cadillac deformation zone, southwest Abitibi greenstone belt, Ontario, Canada. Can J Earth Sci 36:627–647Google Scholar
  607. Williams H (1990) Subprovince accretion tectonics in the south-central Superior Province. Can J Earth Sci 27:570–581Google Scholar
  608. Willis JJ, Hansen VL (1996) Conjugate shear fractures at “Ki Corona,” southeast Parga Chasma, Venus. Lunar Planet Sci 27:1443–1444Google Scholar
  609. Wilson JR, Overgaard G (2005) Relationship between the Layered Series and the overlying evolved rocks in the Bjerkreim-Sokndal Intrusion, Southern Norway. Lithos 83:277–298Google Scholar
  610. Wilson JT (1965) Evidence from ocean islands suggesting movement in the earth. In: Blackett PMS, Bullard E, Runcorn SK (eds) A symposium on continental drift. Philos Trans Royal Soc London A 258:145–167Google Scholar
  611. Windley BF (1984) The Evolving Continents. Wiley, London, p 399Google Scholar
  612. Windley BF, Garde AA (2009) Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: crustal growth in the Archean with modern analogues. Earth Sci Rev 93:1–30Google Scholar
  613. Wyborn LAI (1993) Constraints on interpretations of lower crustal structure, tectonic setting and metallogeny of the Eastern Goldfields and Southern Cross provinces provided by granite geochemistry. Ore Geol Rev 8:125–140Google Scholar
  614. Wyman DA, Kerrich R (2002) Formation of Archean continental lithospheric roots: the role of mantle plumes. Geology 30:543–546Google Scholar
  615. Wyman DA, Kerrich R (2009) Plume and arc magmatism in the Abitibi subprovince: implications for the origin of Archean continental lithospheric mantle. Precamb Res 168:4–22Google Scholar
  616. Wyman DA, Kerrich R, Polat A (2002) Assembly of Archean cratonic mantle lithosphere and crust: plume-arc interaction in the Abitibi-Wawa subduction-accretion complex. Precamb Res 115:37–62Google Scholar
  617. Yin A, Taylor MH (2011) Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation. GSA Bull 123:1798–1821Google Scholar
  618. Zhai M, Zhao G, Zhang Q (2002) Is the Dongwanzi complex an Archean ophiolite? Science 295:923. doi:10.1126/science.295.5557.923aGoogle Scholar
  619. Zhang P-Z, et al (2004) Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32:809–812Google Scholar
  620. Zhao G, Wilde SA, Li S, Sun M, Grant ML, Li X (2008) Response to Note on ’U-Pb zircon constraints on the Dongwanzi ultramafic-mafic body, North China, confirm it is not an Archean ophiolite’ by Kusky and Li. Earth Planet Sci Lett 273:231–234Google Scholar
  621. Zheng JP, O’Reilly SY, Griffin WL, Lu FX, Zhang M, Pearson NJ (2001) Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution. Lithos 57:43–66Google Scholar
  622. Zimmer MM, Plank T, Hauri EH, Yogodzinski GM, Stelling P, Larsen J, Singer B, Jicha B, Mandeville C, Nye CJ (2010) The role of water in generating the calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index. J Petrol 51:2411–2444Google Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2014

Authors and Affiliations

  1. 1.Institut national de la recherche scientifiqueCentre Eau Terre EnvironnementQuébecCanada
  2. 2.Geological Survey of CanadaQuébecCanada

Personalised recommendations