Tantalum

Chapter

Abstract

Tantalum is element No. 73 of the periodic table (period 6, group 5 (or VB), relates to transition metals) with the ground state level 4F3/2 and electron configuration 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 3 6 s 2.

Keywords

Ultimate Tensile Strength Refractory Metal Electron Work Function Fracture Elongation Ground State Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Steurer W (1996) Crystal structure of the metallic elements. In: Cahn RW, Haasen P (eds) Physical metallurgy, 4th ed., Vol. 1, pp. 1–46. Elsevier Science BV, AmsterdamGoogle Scholar
  2. 2.
    Cotton FA, Wilkinson G (1965) Advanced inorganic chemistry. Wiley, New York, LondonGoogle Scholar
  3. 3.
    Akhmetov NS (2001) Obschaya i neorganicheskaya khimiya (General and inorganic chemistry), 4th ed. Vysshaya Shkola, Moscow (in Russian)Google Scholar
  4. 4.
    Kotelnikov RB, Bashlykov SN, Galiakbarov ZG, Kashtanov AI (1968) Osobo tugoplavkie elementy i soedineniya (Extra refractory elements and compounds). Metallurgiya, Moscow (in Russian)Google Scholar
  5. 5.
    Zefirov AP (ed), Veryatin UD, Mashirev VP, Ryabtsev NG, Tarasov VI, Rogozkin BD, Korobov IV (1965) Termodinamicheskie svoistva neorganicheskikh veschestv (Thermodynamic properties of inorganic substances). Atomizdat, Moscow (in Russian)Google Scholar
  6. 6.
    Speight JG, ed (2005) Lange’s handbook of chemistry, 16th ed. McGraw-Hill, New YorkGoogle Scholar
  7. 7.
    Lide DR, ed (2010) CRC handbook of chemistry and physics, 90th ed. CRC Press, Boca Raton, New YorkGoogle Scholar
  8. 8.
    Martienssen W (2005) The elements. In: Martienssen W, Warlimont H (eds) Springer handbook of condensed matter and materials data, pp. 45–158. Springer, Berlin, HeidelbergGoogle Scholar
  9. 9.
    Samsonov GV, ed (1976) Svoistva elementov (Properties of elements), 2nd ed., Vol. 1. Metallurgiya, Moscow (in Russian)Google Scholar
  10. 10.
    Marmer ÉN, Gurvich OS, Maltseva LF (1967) Vysokotemperaturnye materialy (High-temperature materials). Metallurgiya, Moscow (in Russian)Google Scholar
  11. 11.
    Cardarelli F (2008) Materials handbook, 2nd ed. Springer, LondonGoogle Scholar
  12. 12.
    Plansee Aktiengesellschaft (2000) Materials data base. Reutte, AustriaGoogle Scholar
  13. 13.
    Samsonov GV, ed (1976) Svoistva elementov (Properties of elements), 2nd ed., Vol. 2. Metallurgiya, Moscow (in Russian)Google Scholar
  14. 14.
    Lyakishev NP, ed (1997) Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase diagrams of binary metal systems), Vol. 2. Mashinostroenie, Moscow (in Russian)Google Scholar
  15. 15.
    Lyakishev NP, ed (2001) Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase diagrams of binary metal systems), Vol. 3, Part 1. Mashinostroenie, Moscow (in Russian)Google Scholar
  16. 16.
    Lyakishev NP, ed (1996) Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase diagrams of binary metal systems), Vol. 1. Mashinostroenie, Moscow (in Russian)Google Scholar
  17. 17.
    Massalski TB, Subramanian PR, Okamoto H, Kacprzak L, eds (1990) Binary alloy phase diagrams, 2nd ed. ASM International, Metals Park, OhioGoogle Scholar
  18. 18.
    Lyakishev NP, ed (2000) Diagrammy sostoyaniya dvoinykh metallicheskikh sistem (Phase diagrams of binary metal systems), Vol. 3, Part 2. Mashinostroenie, Moscow (in Russian)Google Scholar
  19. 19.
    Dennison DH, Tschetter MJ, Gschneidner KA, Jr (1966) The solubility of tantalum and tungsten in liquid rare-earth metals. J Less-Common Met 11(6):423–435Google Scholar
  20. 20.
    Rudy E (1969) Compendium of phase diagram data. In: Ternary phase equilibria in transition metal-boron-carbon-silicon systems. Report AFML-TR-65–2, Contracts USAF 33(615)-1249 and USAF 33(615)-67-C-1513, Part 5, pp. 1–689. Air Force Materials Laboratory, Wright-Patterson Air Force Base, OhioGoogle Scholar
  21. 21.
    Kosolapova TYa, ed (1990) Handbook of high-temperature compounds: properties, production and applications. Hemisphere, New YorkGoogle Scholar
  22. 22.
    Toth LE (1971) Transition metal carbides and nitrides. Academic Press, New York, LondonGoogle Scholar
  23. 23.
    Kofstad P (1966) High-temperature oxidation of metals. Wiley, New York, LondonGoogle Scholar
  24. 24.
    Kofstad P (1988) High-temperature corrosion. Elsevier Applied Science, London, New YorkGoogle Scholar
  25. 25.
    Holleck H (1984) Binäre und ternäre Carbid- und Nitridsysteme der Ubergangsmetalle (Binary and ternary carbide and nitride systems of the transition metals). Gebrüder Bornträeger, Berlin, Stuttgart (in German)Google Scholar
  26. 26.
    Rogl P, Schuster JC (1992) Phase diagrams of ternary boron nitride and silicon nitride systems. ASM International, Materials Park, OhioGoogle Scholar
  27. 27.
    Borisova AL, Martsenyuk IS (1975) Reactions of boron and aluminum nitrides and materials based on them with refractory metals. Powder Metall Met Ceram 14(10):822–826Google Scholar
  28. 28.
    Samsonov GV, ed (1978) Fiziko-khimicheskie svoistva okislov (Physico-chemical properties of oxides), 2nd ed. Metallurgiya, Moscow (in Russian)Google Scholar
  29. 29.
    Kieffer R, Schwarzkopf P (1953) Hartstoffe und Hartmetalle (Refractory hard metals). Springer, Vienna (in German)Google Scholar
  30. 30.
    Samsonov GV, Vinitskii IM (1980) Handbook on refractory compounds. IFI/Plenum, New YorkGoogle Scholar
  31. 31.
    Ordanyan SS, Chupov VD, Kirshina VYu, Fesenko LV (1985) Reactions of hafnium nitride with molybdenum, tungsten and tantalum. Powder Metall Met Ceram 24(9):714–719Google Scholar
  32. 32.
    Ishchenko TV, Meshkov LL, Sokolovskaya YeM (1984) On the interaction of μ phases in systems formed by transition metals. J Less-Common Met 97:145–150Google Scholar
  33. 33.
    Andrievskii RA, Spivak II (1989) Prochnost tugoplavkikh soedinenii i materialov na ikh osnove (Strength of refractory compounds and materials based on them). Metallurgiya, Chelyabinsk (in Russian)Google Scholar
  34. 34.
    Setton M, Van Der Spiegel J (1991) A review of some aspects of ternary metal-metal-Si and metal-B-Si systems. J Appl Phys 69(2):994–999Google Scholar
  35. 35.
    Boettinger WJ, Peperezko JH, Frankwicz PS (1992) Application of ternary phase diagrams to the development of MoSi2-based materials. Mater Sci Eng A 155(1):33–44Google Scholar
  36. 36.
    Gladyshevskii EI, Lakh VI, Skolozdra RV, Stadnik BI (1964) The mutual solubility of disilicides of the transition metals from group IV, V and VI. Powder Metall Met Ceram 3(4):278–282Google Scholar
  37. 37.
    Papirov II (1981) Struktura i svoistva splavov berilliya (Structure and properties of beryllium alloys). Energoizdat, Moscow (in Russian)Google Scholar
  38. 38.
    Savitskii EM, Burkhanov GS (1971) Metallovedenie splavov tugoplavkikh i redkih metallov (Metallography of refractory and less-common metal alloys), 2nd ed. Nauka, Moscow (in Russian)Google Scholar
  39. 39.
    Brewer L, Lamoreaux RH (1980) Phase diagrams. In: Brewer L (ed) Molybdenum. Physico-chemical properties of its compounds and alloys. Atomic Energy Review, Special Issue N 7, pp. 195–356. International Atomic Energy Agency, ViennaGoogle Scholar
  40. 40.
    Savitskii EM, ed (1984) Blagorodnye metally (Noble metals). Metallurgiya, Moscow (in Russian)Google Scholar
  41. 41.
    Audi G, Wapstra AH, Thibault C, Blachot J, Bersillon O (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys A 729:3–128Google Scholar
  42. 42.
    De Laeter JR, Bohlke JK, De Bievre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Atomic weights of the elements. Review 2000 (IUPAC Technical report). Pure Appl Chem 75(6):683–800Google Scholar
  43. 43.
    Wieser ME (2006) Atomic weights of the elements 2005. (IUPAC Technical report). Pure Appl Chem 78(11):2051–2066Google Scholar
  44. 44.
    Portnoi KI, Romashov VM (1972) Binary constitution diagrams of systems composed of various elements and boron – a review. Powder Metall Met Ceram 11(5):378–384Google Scholar
  45. 45.
    Samsonov GV, Bondarev VN (1968) Germanidy (Germanides). Metallurgiya, Moscow (in Russian)Google Scholar
  46. 46.
    Darby JB, Jr, Lam DJ, Norton LJ, Downey JW (1962) Intermediate phases in binary systems of technetium-99 with several transition elements. J Less-Common Met 4(6):558–563Google Scholar
  47. 47.
    Kubaschewski O (1982) Iron binary phase diagrams. Springer, BerlinGoogle Scholar
  48. 48.
    Bannykh OA, Budberg SP, Alisova SP (1986) Diagrammy sostoyaniya dvoinykh i mnogokomponentnykh system na osnove zheleza (The constitution diagrams of binary and multi-component systems based on iron). Metallurgiya, Moscow (in Russian)Google Scholar
  49. 49.
    Goodwin F, Guruswamy S, Kainer KU, Kammer C, Knabl W, Koethe A, Leichtfried G, Schlamp G, Stickler R, Warlimont H (2005) Metals. In: Martienssen W, Warlimont H (eds) Springer handbook of condensed matter and materials data, pp. 161–430. Springer, Berlin, HeidelbergGoogle Scholar
  50. 50.
    Mueller MH (1977) The lattice parameter of tantalum. Scr Metall 11:693Google Scholar
  51. 51.
    Lee SL, Doxbeck M, Mueller J, Cipollo, Cote P (2004) Texture, structure and phase transformation in sputter beta-tantalum coating. Surf Coat Techn 177–178:44–51Google Scholar
  52. 52.
    Shamrai VF, Warhulska AV, Arakcheeva AV, Grinevich VV (2004) Magnetic properties and crystal structure of β-tantalum. Crystallogr Rep 49:930–935Google Scholar
  53. 53.
    Schussler M, Droegkamp RE (1990) Tantalum. In: Metals handbook, Vol. 2 – Properties and selection: nonferrous alloys and special-purpose materials, pp. 3164–3176. ASM International, Metals Park, OhioGoogle Scholar
  54. 54.
    Gebhardt E, Seghezzi HD (1957) Gerät zur Untersuchung von Gas-Metall-Systemen und Messergebnisse im System Tantal-Sauerstoff (Device for the investigation of gas-metal systems for the measurement in tantalum-oxygen system). Z Metallkd 48(8):430–435 (in German)Google Scholar
  55. 55.
    Cardonne SM, Kumar P, Michaluk CA, Schwartz HD (1992) Tantalum and its alloys. Advanced Mater Processes 9:16–20Google Scholar
  56. 56.
    Conway JB, Flagella BN (1971) Creep rupture data for the refractory metals to high temperatures. Gordon Breach, New YorkGoogle Scholar
  57. 57.
    Schober T, Carl A (1977) A revision of the Ta-H phase diagram. Scr Met 11(5):397–400Google Scholar
  58. 58.
    Köbler U, Schober T (1978) Susceptibility and phase diagram of the Ta-H system. J Less-Common Met 60(1):101–107Google Scholar
  59. 59.
    Köbler U, Welter J-M (1982) Low temperature susceptibility and phase diagrams of the Nb-H and Ta-H systems. J Less-Common Met 84:225–235Google Scholar
  60. 60.
    Flanagan TB, Schober T, Wenzl H (1983) The solvus behaviour of the tantalum-hydrogen (deuterium) system. Acta Met 31(4):483–487Google Scholar
  61. 61.
    Fromm E, Jehn H (1984) Solubility hydrogen in the elements. Bull Alloy Phase Diagrams 5(3):323–326Google Scholar
  62. 62.
    San-Martin A, Manchester FD (1991) The H-Ta (hydrogen-tantalum) system. J Phase Equilib 12(3):332–343Google Scholar
  63. 63.
    Condon JB, Schober T, Lässer R (1990) On the Ta-D and Ta-T phase diagrams. J Nucl Mater 170(1):24–30Google Scholar
  64. 64.
    Garg SP, Venkatraman M, Krishnamurthy N (1990) Li-Ta (lithium-tantalum) system. J Alloy Phase Diagrams 6(1):8–9Google Scholar
  65. 65.
    Barker MG (1979) Reactions of the liquid alkali metals with the metals Zr, Nb, Ta, Mo and W and their oxides. Rev Int Haut Temp Refract 16(3):237–243Google Scholar
  66. 66.
    Garg SP, Venkatraman M, Krishnamurthy N (1990) Na-Ta (sodium-tantalum) system. J Alloy Phase Diagrams 6(1):10–11Google Scholar
  67. 67.
    Klueh RL (1969) Effect of oxygen on the compatibility of niobium with potassium. Corrosion 25(10):416–422Google Scholar
  68. 68.
    Stecura S (1970) Corrosion by liquid metals. Plenum Press, New York, LondonGoogle Scholar
  69. 69.
    Garg SP, Venkatraman M, Krishnamurthy N (1990) K-Ta (potassium-tantalum) system. J Alloy Phase Diagrams 6(1):12–13Google Scholar
  70. 70.
    Havinga EE, Damsma H, Kannis JM (1972) Compounds and pseudo-binary alloys with the CuAl2 (C16)-type structure. IV. Superconductivity. J Less-Common Met 27(3):281–291Google Scholar
  71. 71.
    Stuemke M, Petzow G (1975) Kristallstrukturen und Gitterabmessungen von Übergangsmetall -Diberylliden und -Diboriden in ternären Mischkristallbereichen (Crystal structure and lattice constants of transition metal diberyllides and diborides in ternary solid solutions). Z Metallkd 66(5):292–297 (in German)Google Scholar
  72. 72.
    Dennison DH, Tschetter MJ, Gschneidner KA, Jr (1965) The solubility of tantalum in eight liquid rare-earth metals. J Less-Common Met 10(2):108–115Google Scholar
  73. 73.
    McMasters OD, Larsen WL (1961) Phase equilibria in the thorium-tantalum system. J Less-Common Met 3(4):312–320Google Scholar
  74. 74.
    Ackerman RJ, Rauh EG (1972) Determination of liquidus curves for the Th-W, Th-Ta, Zr-W and Hf-W: the anomalous behaviour of metallic thorium. High Temp Sci 4(4):272–282Google Scholar
  75. 75.
    Krishnan R, Garg SP, Krishnammurthy N (1988) Ta-U (tantalum-uranium) system. J Alloy Phase Diagrams 4(3):204–208Google Scholar
  76. 76.
    Chandrasekharian MS, Dharwadkar SR, Das D (1986) High temperature phase diagrams of Re-U, Ta-U and W-U. Z Metallkd 77(8):509–514Google Scholar
  77. 77.
    Budberg PB, Shakhova KI (1967) Diagramma sostoyaniya sistemy titan-tantal (The constitution diagram of the titanium-tantalum system). Izv AN SSSR Neorg Mater 3(4):656–660 (in Russian)Google Scholar
  78. 78.
    Nikitin PN, Mikheev VS (1969) Rastvorimost tantala v alfa-titane (The solubility of tantalum in alpha-titanium). Fiz Metal Metalloved 28(6):1127–1129 (in Russian)Google Scholar
  79. 79.
    Williams DE, Jackson RJ, Larsen WL (1962) The tantalum-zirconium alloy system. Trans AIME 224(4):751–756Google Scholar
  80. 80.
    Pease LF, Brophy JH (1963) Some modifications in the diagram for the tantalum-zirconium system. Trans AIME 227(5):1245–1249Google Scholar
  81. 81.
    Krishnan R, Garg SP, Krishnamurthy N (1989) Hf-Ta (hafnium-tantalum) system. J Alloy Phase Diagrams 5(2):117–124Google Scholar
  82. 82.
    Nefedov AP, Sokolovskaya EM, Grigorev AT, Sokolova IG, Nedumov NA (1964) Fazovye prevrashcheniya v tverdom sostoyanii v splavakh vanadiya s tantalum (Solid state phase transformations in the alloys of vanadium with tantalum). Zh Neorg Khim 9(4):883–889 (in Russian)Google Scholar
  83. 83.
    Auld JH, Ryan NE (1961) The solid solubility of tantalum in chromium. J Less-Common Met 3(3):221–225Google Scholar
  84. 84.
    Gebhardt E, Rexer J (1967) Precipitation phenomena in Ta-Cr solid solution. Z Metallkd 58:611–616Google Scholar
  85. 85.
    Venkatraman M, Neuman JP (1987) The Cr-Ta (chromium-tantalum) system. J Phase Equilib 8(2):112–116Google Scholar
  86. 86.
    Savitskii EM, Kopetskii ChV (1960) Diagramma sostoyaniya sistemy marganets-tantal (The constitution diagram of the manganese-tantalum system). Zh Neorg Khim 5(11):2638–2640 (in Russian)Google Scholar
  87. 87.
    Raman A (1966) On the tantalum-iron system. Trans Indian Inst Met 19:202–205Google Scholar
  88. 88.
    Abrahamson EP, Lopata SL (1966) The lattice parameters and solubility limits of alpha iron as affected by some binary transition-element additions. Trans AIME 236(1):76–87Google Scholar
  89. 89.
    Fischer WA, Lorenz K, Fabritius H, Schiegel D (1970) Untersuchung der α/γ-Umwandlung in hochreinen Zweistofflegierungen des Eisens mit Molybdän, Vanadin, Wolfram, Niob, Tantal, Zirkon und Kobalt (Examination of the α/γ transformation in highly pure binary alloys of iron with molybdenum, vanadium, tungsten, niobium, tantalum, zirconium and cobalt). Arch Eisenhüttenwes 41(5):489–498 (in German)Google Scholar
  90. 90.
    Swartzendruber LJ, Paul E (1986) The Fe-Ta (iron-tantalum) system. Bull Alloy Phase Diagrams 7(3):254–259Google Scholar
  91. 91.
    Raub E, Beeskow H, Fritzsche WZ (1963) Die Struktur der festen Tantal-Ruthenium-Legierungen (The structure of the solid tantalum-ruthenium alloys). Z Metallkd 54(8):451–454 (in German)Google Scholar
  92. 92.
    Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71Google Scholar
  93. 93.
    Chen BH, Franzen HF (1990) Phase transitions and heterogeneous equilibria in the TaRu homogeneity range. J Less-Common Met 157(1):37–45Google Scholar
  94. 94.
    Okamoto H (1991) The Ru-Ta (ruthenium-tantalum) system. J Phase Equilib 12(3):395–397Google Scholar
  95. 95.
    Raman A (1967) Röntgenographische Untersuchungen im System Tantal-Kobalt (X-ray examinations in the tantalum-cobalt system). Metall 21(9):900–903Google Scholar
  96. 96.
    Giessen BC, Ibach H, Grant NJ (1964) The constitution diagram tantalum-rhodium. Trans AIME 230(1):113–122Google Scholar
  97. 97.
    Ferguson WH, Giessen BC, Grant NJ (1963) The constitution diagram tantalum-iridium. Trans AIME 227:1401–1406Google Scholar
  98. 98.
    Pimenov VN, Ugaste YuÉ, Akkushkarova KA (1977) Issledovanie vzaimnoi diffuzii i diagrammy sostoyanii v sisteme Ni-Ta (A study of the mutual diffusion and constitution diagram of the Ni-Ta system). Izv AN SSSR Metally (1):184–189 (in Russian)Google Scholar
  99. 99.
    Nash P, West DRF (1983) Ni-Al and Ni-Ta phase diagrams. Met Sci 17(2):99–100Google Scholar
  100. 100.
    Nash A, Nash P (1984) The Ni-Ta (nickel-tantalum) system. Bull Alloy Phase Diagrams 5(3):259–265Google Scholar
  101. 101.
    Darby JB, Jr, Downey JW, Norton LJ (1963) Intermediate phases in the tantalum-palladium system. Trans AIME 227:1028–1029Google Scholar
  102. 102.
    Savitskii EM, Polyakova VP, Tylkina MA, Burkhanov GS (1964) Sistema palladii-tantal (The palladium-tantalum system). Zh Neorg Khim 9(7):1645–1649 (in Russian)Google Scholar
  103. 103.
    Maldonado A, Schubert K (1964) Strukturuntersuchungen in einigen zu T5-T10 homologen und quasihomologen Legierungssystemen (The structural studies of some T5-T10 homologous and quasi-homologous alloy systems). Z Metallkd 55(10):619–626 (in German)Google Scholar
  104. 104.
    Savitskii EM, Polyakova VP, Tylkina MA (1967) Splavy palladiya (Palladium alloys). Nauka, Moscow (in Russian)Google Scholar
  105. 105.
    Brunsch A, Steeb S (1971) Diffusionsuntersuchung in System Pd-Ta mittels Mikrosond (Diffusion investigation into Pd-Ta system by microsonde). Z Naturforsch (2):274–279 (in German)Google Scholar
  106. 106.
    Waterstrat RM, Gissen RC, Kosh R, Manuzewski RC (1978) The tantalum-palladium constitution diagram. Metal Trans A 9(5):643–648Google Scholar
  107. 107.
    Giessen BC, Kane RH, Grant NJ (1965) On the constitution diagram Ta-Pt between 50–100 at.% Pt. Trans AIME 233(5):855–864Google Scholar
  108. 108.
    Waterstrat RM (1981) Analysis of selected alloys in the systems Cr-Pd, Cr-Ru, V-Pd and Ta-Pt. J Less-Common Met 80(1):P31-P36Google Scholar
  109. 109.
    Raub E, Beeskow H, Menzel D (1961) Tantal-Gold-Legierungen (Tantalum-gold alloys). Z Metallkd 52(3):189–193 (in German)Google Scholar
  110. 110.
    Okamoto H, Massalski TB (1985) The Au-Ta (gold-tantalum) system. Bull Alloy Phase Diagrams 6(4):365–368Google Scholar
  111. 111.
    Nowotny H, Benesovsky F, Kieffer R (1959) Beitrag zum Aufbau der Syteme Niob-Bor und Tantal-Bor (Contribution to building the systems niobium-boron and tantalum-boron). Z Metallkd 50(7):417–423 (in German)Google Scholar
  112. 112.
    Portnoi KI, Romashov VM, Salibekov SE (1971) Constitution diagram of the system tantalum-boron. Powder Metall Met Ceram 10(11):925–927Google Scholar
  113. 113.
    Crespo AJ, Tergenius L-E, Lundström T (1981) The solid solution of 4d, 5d and some p elements in β rhombohedral boron. J Less-Common Met 77(1):147–150Google Scholar
  114. 114.
    Kimura H, Nakano O, Ohkoshi T (1973) On the aluminum-tantalum system. J Japan Inst Light Metals 23(3):106–112 (in Japanese)Google Scholar
  115. 115.
    Schuster JC (1985) Phases and phase relations in the system Ta-Al. Z Metallkd 76(11):724–727Google Scholar
  116. 116.
    Meissner H-G, Schubert K (1965) Zum Aufbau einiger zu T5-Ga homologer und quasihomologer Systeme. I. Die Systeme Vanadium-Gallium, Niob-Gallium und Tantal-Gallium und die Struktur von Ti6Sn5(h) (Structure of some T5-Ga homologous and quasi-homologous systems. I. The systems vanadium-gallium, niobium-gallium and tantalum-gallium and the structure of Ti6Sn5(h)). Z Metallkd 56(7):475–484 (in German)Google Scholar
  117. 117.
    Havinga EE, Van Maaren MH, Damsma H (1969) Superconductivity of compounds having the Si2U3-type structure. Phys Lett A 29(3):109–110Google Scholar
  118. 118.
    Brown PW (1977) Phases in the Ta-Ga binary system. J Less-Common Met 52(1):77–80Google Scholar
  119. 119.
    Villars P, Girgis K (1982) Die Zustandbilder Nb-In, Nb-Tl, Ta-In und Ta-Tl (Phase diagrams of Nb-In, Nb-Tl, Ta-In and Ta-Tl alloys). Z Metallkd 73(3):169–171 (in German)Google Scholar
  120. 120.
    120.Okamoto H (1988) The In-Ta (indium-tantalum) system. Bull Alloy Phase Diagrams 9(1):56–58Google Scholar
  121. 121.
    Sandulova AV, Khe Yu-L (1959) Diffuziya i rastvorimost tantala v germanii (Diffusion and solubility of tantalum in germanium). Doklady AN SSSR 128(2):329–332 (in Russian)Google Scholar
  122. 122.
    Andrievskii RA, Lanin AG, Rymashevskii GA (1974) Prochnost tugoplavkikh soedinenii (Strength of refractory compounds). Metallurgiya, Moscow (in Russian)Google Scholar
  123. 123.
    Spiridonov FM, Mulenkova MN, Tsirelnikov VI, Komissarova LN (1981) Promezhutochnye fazy v sisteme HfO2 – Ta2O5 (The intermediate phases in the HfO2 – Ta2O5 system). Zh Neorg Khim 26(6):1705–1707 (in Russian)Google Scholar
  124. 124.
    Samsonov GV (1969) Nitridy (Nitrides). Naukova Dumka, Kyiv (in Russian)Google Scholar
  125. 125.
    Östhagen K, Kofstad P (1963) The reaction between tantalum and nitrogen at 800–1300 °C. J Less-Common Met 5(1):7–25Google Scholar
  126. 126.
    Bunn P, Wert C (1964) Solubility of nitrogen in tantalum. Trans AIME 230:936–937Google Scholar
  127. 127.
    Geils RH, Potter DJ (1973) Phase equilibria in the metal-rich side of the Ta-N system. Met Trans 4(6):1469–1474Google Scholar
  128. 128.
    Korovin SS, Bukin VI, Fedorov PI, Reznik AM (2003) Redkie i rasseyannye elementy (Less-common and dissipated elements), Vol. 3. MISIS, Moscow (in Russian)Google Scholar
  129. 129.
    Wang Y, Calvert LD, Gabe EJ, Taylor JB (1979) Structures of Ta3As and (Nb,Ta)3As. Acta Crystallogr B 35:1447–1450Google Scholar
  130. 130.
    Ling RG, Belin C (1980) Affinement de la structure cristalline du diarséniure de tantale (Refinement of the crystal structure of tantalum diarsenide). Compt Rend Acad Sci Paris Ser C 202:891–893 (in French)Google Scholar
  131. 131.
    Saini GS, Calvert LD, Taylor JB (1964) Preparation and characterization of crystals of MX- and MX2-type arsenides of niobium and tantalum. Canad J Chem 42(3):630–634Google Scholar
  132. 132.
    Dubrovskaya LB, Shveikin GP, Geld PV (1964) Sistema Ta-Ta2O5 (The Ta-Ta2O5 system). Zh Neorg Khim 9(5):1182–1186 (in Russian)Google Scholar
  133. 133.
    Jehn H, Olzi E (1972) High temperature solid-solubility limit and phase studies in the system tantalum-oxygen. J Less-Common Met 27(3):297–309Google Scholar
  134. 134.
    Stecura S (1974) Observation of oxide particles below the apparent oxygen solubility limit in tantalum. Metal Trans 5(6):1337–1340Google Scholar
  135. 135.
    Fromm E, Kirchheim R (1975) EMK-Messungen in den Sauerstoffsystemen der Va-Metalle mit einem ThO2-Y2O3 Festelektrolyten (EMF-measurements in oxygen – Va metals systems using a ThO2-Y2O3 solid electrolyte). Z Metallkd 66(3):144–150 (in German)Google Scholar
  136. 136.
    Aslanov LA, Simanov YuP, Novoselova AV, Ukrainskii YuM (1963) Triselenid i trisulfid tantala (Tantalum triselenide and trisulfide). Zh Neorg Khim 8(12):2635–2637 (in Russian)Google Scholar
  137. 137.
    Aslanov LA, Simanov YuP, Novoselova AV, Ukrainskii YuM (1964) Fazy peremennogo sostava v sisteme tantal-selen (The variable composition phases in the tantalum-selenium system). Zh Neorg Khim 9(9):2264–2265 (in Russian)Google Scholar
  138. 138.
    Revolinsky E, Brown BE, Beerntsen DJ, Armitage CH (1965) The selenide and telluride systems of niobium and tantalum. J Less-Common Met 8(1):63–75Google Scholar
  139. 139.
    Ukrainskii YuM, Novoselova AV, Simanov YuP (1959) Issledovanie sistemy tantal-tellur (A study in the tantalum-tellurium system). Zh Neorg Khim 4(1):148–152 (in Russian)Google Scholar
  140. 140.
    Ukrainskii YuM, Kovba LM, Simanov YuP, Novoselova AV, (1959) O β-faze sistemy tantal-tellur (On β-phase in the tantalum-tellurium system). Zh Neorg Khim 4(12):2820–2822 (in Russian)Google Scholar
  141. 141.
    Bjerkelund E, Kjekshus A (1964) On the crystal structure of TaTe4. J Less-Common Met 7(3):231–234Google Scholar
  142. 142.
    Witteman WG, Giorgi AL, Vier DT (1960) The preparation and identification of some intermetallic compounds of polonium. J Phys Chem 64(4):434–440Google Scholar
  143. 143.
    Nekrasov BV (1973) Osnovy obschei khimii (Foundations of general chemistry), 3rd ed., Vol. 1. Khimiya, Moscow (in Russian)Google Scholar
  144. 144.
    Roth RS, Waring JL (1970) Effect of oxide additions on the polymorphism of tantalum pentoxide. III. “Stabilization” of the low temperature structure type. J Res Natl Bur Stand Sect A 74(4):485–493Google Scholar
  145. 145.
    Laurila T, Zeng K, Molarius J, Riekkinen T, Suni I, Kivilahti JK (2002) Effect of oxygen on the reactions in Si/Ta/Cu and Si/TaC/Cu systems. Microelect Eng 64:279–287Google Scholar
  146. 146.
    Li N, Warnes WH (2001) Estimation of the Nb-Ti-Ta phase diagram. IEEE Trans Appl Superconductivity 11(1):3800–3803Google Scholar
  147. 147.
    Cao P, Lau SP, Tay BK (2001) Phase formation in Ta-Si-N ternary system using the Gibbs free energy. In: Low power and low voltage integrated systems. Proceedings of 9th International symposium on IC technology, systems and applications, Vol. 9, pp. 315–318. Nanyang Technological University, SingaporeGoogle Scholar
  148. 148.
    Kumar KCH, Van Rompaey T, Wollants P (2002) Thermodynamic calculation of the phase diagram of the Co-Nb-Ta system. Z Metallkd 93(11):1146–1153Google Scholar
  149. 149.
    Garg SP, Venkatraman M, Krishnamurthy N (1990) The Pu-Ta (plutonium-tantalum) system. J Alloy Phase Diagrams 6:111–115Google Scholar
  150. 150.
    Asrar N, Meshkov LL, Sokolovskaya EM (1988) Phase equilibria in ternary alloys based on iron-group metals and containing refractory metals (Mo, W, Nb, Ta). J Less-Common Met 144:41–52Google Scholar
  151. 151.
    Kaufman L (1991) Calculation of multicomponent tantalum based phase diagrams. Calphad 15(3):261–282Google Scholar
  152. 152.
    Frelin C, Desre P, Bonnier E (1968) Contribution a l’etude du diagramme d’equilibre de phases ternaire cuivre-niobium-tantale (Contribution to the study of equilibrium of ternary phase diagram copper-niobium-tantalum). Rev Int Haute Temp Refract (4):261 (in French)Google Scholar
  153. 153.
    Virkir AV, Raman A (1969) Alloy chemistry of sigma U related phases – 2. Z Metallkd 60(7):594–600Google Scholar
  154. 154.
    Hansen RC, Raman A (1970) Alloy chemistry of sigma U related phases – 3. Z Metallkd 61(2):115–120Google Scholar
  155. 155.
    Raffelsletter P, Richter KW (2009) Phase equilibria and chemical vapour transport in the system Mo-Ta-As. J Alloys Compd 480(2):397–402Google Scholar
  156. 156.
    Zhou SH, Wang Y, Chen L-Q, Liu Z-K, Napolitano RE (2009) Solution-based thermodynamic modelling of the Ni-Ta and Ni-Mo-Ta systems using first-principle calculations. Calphad 33:631–641Google Scholar
  157. 157.
    Cui YW, Jin ZP (1999) Experimental study and reassessment of the Ni-Ta binary system. Z Metallkd 90(3):233–241Google Scholar
  158. 158.
    Pan XM, Jin ZP (2002) Experimental determination and re-optimization of Ni-Ta system. Trans Nonferr Met Soc China 12:748–753Google Scholar
  159. 159.
    Cui YW, Lu XG, Jin ZP (1999) Experimental study and thermodynamic assessment of the Ni-Mo-Ta ternary system. Metall Mater Trans A 30(11):2735–2744Google Scholar
  160. 160.
    Zakharov AM, Novikov II, Pshokin VP (1971) Niobievyi ugol troinoi sistemy Nb-Ti-B (The niobium-rich angle of the Nb-Ti-B ternary system). Izv Vyssh Uchebn Zaved Tsvet Metall (4):111–114 (in Russian)Google Scholar
  161. 161.
    Emelianov VS, Godin IuG, Evstiukhin AI (1958) Study of the zirconium apex of the Zr-Ta-Nb phase diagram. Sov J Atom Energy 4(2):211–220Google Scholar
  162. 162.
    Xiong W, Du Y, Liu Y, Huang BY, Xu HH, Chen HL, Pan Z (2004) Thermodynamic assessment of the Mo-Nb-Ta system. Calphad 28:133–140Google Scholar
  163. 163.
    Miura S, Ohkubo K, Terada Y, Kimura Y, Mishima Y, Yamabe-Mitarai Y, Harada H, Mohri T (2005) Phase equilibria in Ir-rich portion of Ir-Al-X (X: V, Nb and Ta) ternary systems. J Alloys Compd 395(1–2):263–271Google Scholar
  164. 164.
    Fujita M, Kaneno Y, Takasugi T (2006) Phase field and room-temperature mechanical properties of C15 Laves phase in Nb-Hf-Cr and Nb-Ta-Cr alloy systems. J Alloys Compd 424(1–2):283–288Google Scholar
  165. 165.
    Velikanova TYa, Bondar AA, Grytsiv AV, Dovbenko OI (2001) Metallochemistry of chromium with d-metals and carbon. J Alloys Compd 320(2):341–352Google Scholar
  166. 166.
    Reeve DA (1969) The binary system CaO-Ta2O5. J Less-Common Met 17(2):215–222Google Scholar
  167. 167.
    Booker PH, Brukl CE (1970) The phase equilibria in the metal-rich region of the hafnium – tantalum – nitrogen system. In: Phase equilibria investigations of binary, ternary and higher order systems. Report AFML-TR-69–117, Contract USAF 33(615)-67-C-1513, Part 6, pp. 1–73. Air Force Materials Laboratory, Wright-Patterson Air Force Base, OhioGoogle Scholar
  168. 168.
    King BW, Schultz J, Durbin EA, Duckworth WH (1956) Properties of tantala systems. Report BMI-1106, pp. 1–40. USAECGoogle Scholar
  169. 169.
    Baskin Y, Schell DC (1963) Phase studies in the binary system MgO-Ta2O5. J Am Ceram Soc 46(4):174–177Google Scholar
  170. 170.
    Roth RS, Waring JL, Brower WS (1970) Effect of oxide additions on the polymorphism of tantalum pentoxide. II. “Stabilization” of the high temperature structure type. J Res Natl Bur Stand Sect A 74(4):477–484Google Scholar
  171. 171.
    Roth RS, Parker HS, Brower WS, Waring JL (1973) Phase equilibriums, crystal chemistry and crystal growth of alkali oxide – metal oxide systems. In: Van Gool W (ed) Fast ion transport solids, solid state batteries devices, pp. 217–232. North Holland, AmsterdamGoogle Scholar
  172. 172.
    Mohanty GP, Fiegel LJ, Healy JH (1964) On the system niobium pentoxide – tantalum pentoxide. J Phys Chem 68(1):208–210Google Scholar
  173. 173.
    Holtzberg F, Reisman A (1961) Sub-solidus equilibria in the system Nb2O5-Ta2O5. J Phys Chem 65(7):1192–1196Google Scholar
  174. 174.
    Gladyshevskii EI (1962) Crystal structure of compounds and phase equilibria in ternary systems of two transition metals and silicon. Powder Metall Met Ceram 1(4):262–265Google Scholar
  175. 175.
    Budberg PB, Alisova SP (1966) The system TiCr2 – TaCr2 – NbCr2. Powder Metall Met Ceram 5(10):814–817Google Scholar
  176. 176.
    Egorov FF, Pshenichnaya OV, Matsera VE, Mamonova AA (1997) Interaction of nitrides of group IV-V transition metals with chromium. Powder Metall Met Ceram 36(3–4):197–202Google Scholar
  177. 177.
    Nowotny H, Rogl P (1977) Ternary metal borides. In: Matkovich VI (ed) Boron and refractory borides, pp. 413–438. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  178. 178.
    Kuzma YuB, Sobolev AS, Fedorov TF (1971) Phase equilibria in the ternary systems tantalum-iron-boron and tantalum-nickel-boron. Powder Metall Met Ceram 10(5):410–414Google Scholar
  179. 179.
    Argon AS (1996) Mechanical properties of single-phase crystalline media: deformation at low temperatures. In: Cahn RW, Haasen P (eds) Physical metallurgy, 4th ed., Vol. 3, pp. 1877–1955. Elsevier Science BV, AmsterdamGoogle Scholar
  180. 180.
    Gruehn R, Schäfer H (1966) Oxidische Nb- und Ta-Verbindungen mit O/Me = 2.33 – 2.50 (Nb and Ta oxide compounds with O/Me = 2.33 – 2.50). J Less-Common Met 10(2):152–154 (in German)Google Scholar
  181. 181.
    Negas T, Roth RS, McDaniel CL, Parker HS, Olson CD (1977) Oxidation-reduction reactions of CeMO4+x (M = Ta or Nb) phases. Mater Res Bull 12(12):1161–1171Google Scholar
  182. 182.
    Roth RS, Negas T, Parker HS, Minor DB, Jones C (1977) Crystal chemistry of cerium titanates, tantalates and niobates. Mater Res Bull 12(12):1173–1182Google Scholar
  183. 183.
    Keller C (1965) Die reaktion der dioxide der elemente thorium bis americium mit niob- und tantalpentoxid (The reaction of the dioxides of the elements thorium to americium with niobium and tantalum pentoxide). J Inorg Nucl Chem 27(6):1233–1246 (in German)Google Scholar
  184. 184.
    Holleck H, Nowotny H, Benesovsky F (1963) Die Verbindungen Ta3Ga2 and IrGa (The connections of Ta3Ga2 and IrGa). Monatsh Chem 94(5):841–843 (in German)Google Scholar
  185. 185.
    Garg SP, Venkatraman M, Krishnamurthy N (1990) The Rb-Ta (rubidium-tantalum) system. J Alloy Phase Diagrams 6:145–146Google Scholar
  186. 186.
    Garg SP, Venkatraman M, Krishnamurthy N (1990) The Cs-Ta (cesium-tantalum) system. J Alloy Phase Diagrams 6:116–117Google Scholar
  187. 187.
    Samsonov GV (1966) Berillidy (Beryllides). Naukova Dumka, Kyiv (in Russian)Google Scholar
  188. 188.
    Gulyaev BB (1968) Obobshchenie diagram sostoyaniya metallicheskikh system (Generalization of the phase diagrams of metallic systems). In: Savitskii EM (ed) Diagrammy sostoyaniya metallicheskikh system (Phase diagrams of metallic systems), p.257–267. Nauka, Moscow (in Russian)Google Scholar
  189. 189.
    Garg SP, Venkatraman M, Krishnamurthy N, Vijaykar SR (1998) The RE-Ta (rare earth – tantalum) system. J Phase Equilib 19:385–394Google Scholar
  190. 190.
    Griffin RB, Gschneidner KA Jr (1971) Effect of the sixth period elements on the melting and transformation temperatures of praseodymium. Part I. Experimental. Metall Trans 2:2517–2524Google Scholar
  191. 191.
    Savitskii EM, Efimov YV, Kozlova ND, Zvolinskii OI (1973) The influence of rare-earth metals on superconductivity of vanadium, niobium, and tantalum. Dokl Akad Nauk SSSR 213:826–829Google Scholar
  192. 192.
    Baxi HC, Massalski TB, Rizzo HF (1991) The Pu-Ta (plutonium-tantalum) system. J Phase Equilib 12(5):593–598Google Scholar
  193. 193.
    Schonfeld FW, Cramer EM, Miner WN, Ellinger FH, Coffinberry AS (1959) Plutonium constitutional diagrams. Prog Nucl Energy Ser 5 2:579–599Google Scholar
  194. 194.
    Kaufman L (1991) Coupled thermochemical and phase diagram data for tantalum based binary alloys. Calphad 15:243–259Google Scholar
  195. 195.
    English JJ (1961) Binary and ternary phase diagrams of columbium, molybdenum, tantalum and tungsten. Report DMIC-152, Contract AF-33(616)-7747, pp. 1–226. Defence Metals Information Center, Battelle Memorial Institute, Columbus, OhioGoogle Scholar
  196. 196.
    Moffatt WG (1986) Binary phase diagrams handbook. General Electric Co., Schenectady, New YorkGoogle Scholar
  197. 197.
    Baren MR (1988) The Ag-Ta (silver-tantalum) system. Bull Alloy Phase Diagrams 9:244Google Scholar
  198. 198.
    Chasanov MG, Schablaske RV, Johnson I (1968) The system Ta-Zn: phase studies. J Electrochem Soc Jpn 36:192–196Google Scholar
  199. 199.
    Garg SP, Krishnamurathy N, Venkatraman M, Raju S (1991) The Ge-Ta (germanium-tamtalum) system. J Phase Equilib 12(6):661–663Google Scholar
  200. 200.
    Okamoto H (1991) The Sn-Ta (tin-tantalum) system. J Phase Equilib 24:484Google Scholar
  201. 201.
    Frisk K (1998) Analysis of the phase diagram and thermochemistry in the Ta-N and the Ta-C-N systems. J Alloys Compd 278:216–226Google Scholar
  202. 202.
    Gatterer J, Dufek G, Ettmayer P, Kieffer R (1975) Das kubische Tantalmononitrid (B1) und seine Mischbarkeit mit den isotypen Übergangsmetall-nitriden und –carbiden (The cubic tantalum mononitride (B1) and its miscibility with the isotypic transition metal nitrides and carbides). Monatsh Chem 106:1137–1147 (in German)Google Scholar
  203. 203.
    Thomas JO, Ersson NO, Anderson Y (1980) An x-ray film powder profile refinement of the crystal structure of Ta5P3. J Appl Crystallogr 13:605–607Google Scholar
  204. 204.
    Garg SP, Krishnamurthy N, Awasthi A, Venkatraman M (1996) The O-Ta (oxygen-tantalum) system. J Phase Equilib 17(1):63–77Google Scholar
  205. 205.
    Okamoto H (1999) The Br-Ta (bromine-tantalum) system. J Phase Equilib 20:635Google Scholar
  206. 206.
    McCarley RE, Boatman JC (1965) The equilibrium phase diagrams for the tantalum – tantalum bromide and tantalum – tantalum iodide systems. Inorg Chem 4:1486–1491Google Scholar
  207. 207.
    Okamoto H (2001) The I-Ta (iodine-tantalum) system. J Phase Equilib 22:93Google Scholar
  208. 208.
    Rieger W, Nowotny H, Benesovsky F (1965) Über einige Komplexboride von Übergangsmetallen (Some complex borides of transition metals). Monatsh Chem 96:844–851Google Scholar
  209. 209.
    Schuster JC, Nowotny H (1985) Phase equilibria in the ternary systems Nb-Al-N and Ta-Al-N. Z Metallkd 76:728–729Google Scholar
  210. 210.
    Jehn HA (1993) The Al-N-Ta (aluminium-nitrogen-tantalum) system. Ternary Alloys VCH 7:301–303Google Scholar
  211. 211.
    Kuzma YuB, Chaban NF, Vityk OS (1979) Phase equilibria at 800 °C in the Ta-Co-B and Nb-Co-B systems. Powder Metall Met Ceram 18:672–674Google Scholar
  212. 212.
    Stadelmaier HH, Hofer G (1964) Die kobaltreichen Kobalt-Tantal-Bor-Legierungen um die Phase Co21Ta2B6 (The cobalt-rich tantalum-cobalt-boron alloys the phase Co21Ta2B6). Metall 18:460–462 (in German)Google Scholar
  213. 213.
    Kuzma YuB, Telegus VS, Marko MA (1972) Phase equilibria in the systems hafnium-niobium-boron and tantalum-chromium-boron. Powder Metall Met Ceram 11:308–312Google Scholar
  214. 214.
    Marko MA, Kuzma YuB, Gladyshevskii EI (1976) Rentgenograficheskoe issledovanie sistem Nb-Ge-B i Ta-Ge-B (The x-ray study of Nb-Ge-B and Ta-Ge-B systems). Dopov Akad Nauk Ukr RSR Ser A Fiz Mat Tekh Nauki 38:555–558 (in Russian)Google Scholar
  215. 215.
    Kuzma YuB, Svarichevskaya SI, Telegus VS (1971) Systems titanium-tungsten-boron, hafnium-tantalum-boron and tantalum-tungsten-boron. Powder Metall Met Ceram 10:478–481Google Scholar
  216. 216.
    Ordanyan SS, Nikolaeva EE, Kozlovskii LV (1984) Interactions in LaB6-M5B2 systems. Inorg Mater 20:1580–1583Google Scholar
  217. 217.
    Sobolev AS, Kuzma YuB, Soboleva TE, Fedorov TF (1968) Phase equilibria in tantalum-titanium-boron and tantalum-molybdenum-boron systems. Powder Metall Met Ceram 7:48–51Google Scholar
  218. 218.
    Stadelmaier HH, Kotyk M, Hofer G (1964) Die nickelreichen Legierungen im Dreistoffsystem Nickel-Tantal-Bor (The nickel-rich alloys in the ternary system nickel-tantalum-boron). Metall 18:1065–1066 (in German)Google Scholar
  219. 219.
    Lugscheider E, Reimann H, Pankert R (1982) Mit 4a- und 5a-Metallen stabilisierte tau-Boride des Nickel (Tau-borides of nickel stabilized by 4a and 5a metals). Metall 36:247–251 (in German)Google Scholar
  220. 220.
    Lavendel HW (1961) Alloys of tantalum diboride with iron, cobalt, and nickel. Planseeber Pulvermetall 9:80–95Google Scholar
  221. 221.
    Range KJ, Wildenauer M, Andratschke M (1996) Crystal structure of tantalum orthoborate TaBO4. Z Kristallogr 211:815Google Scholar
  222. 222.
    Voroshilov YuV, Kuzma YuB (1969) Reaction of zirconium with the transition metals and boron. Powder Metall Met Ceram 8:941–944Google Scholar
  223. 223.
    Leitnaker JM, Bowman MG, Gilles PW (1962) Thermodynamic properties of the tantalum and tungsten borides. J Electrochem Soc 109:441–443Google Scholar
  224. 224.
    Nowotny H, Lux B, Kudielka H (1956) Das Verhalten metallreicher, hochschmelzender Silizide gegenüber Bor, Kohlenstoff, Stickstoff und Sauerstoff (The reaction of metal-rich refractory silicides with boron, carbon, nitrogen and oxygen). Monatsh Chem 87:447–470 (in German)Google Scholar
  225. 225.
    Holleck H, Thümmler F (1967) Ternäre Komplex-carbide, -nitride und -oxide mit teilweise aufgefüllter Ti2Ni-Struktur (Ternary complex carbides, nitrides and oxides with partially filled Ti2Ni structure). Monatsh Chem 98:133–134 (in German)Google Scholar
  226. 226.
    Schönberg N (1954) An x-ray investigation on ternary phases in the Ta-Me-N systems (Me = Ti, Cr, Mn, Fe, Co, Ni). Acta Chem Scand 8:213–220Google Scholar
  227. 227.
    Steinmetz J, Malaman B, Roques B (1978) Trois nouveaux siliciures ternaires ordonnes: (Cr,Nb,Ta)11Si8, (Mn,Mo)11Si8 et les germaniures isotypes (T,Nb)11Ge8, T = V, Cr, Mn (Three new ternary silicides ordered: (Cr,Nb,Ta)11Si8, (Mn,Mo)11Si8 and isotypic germanides (T,Nb)11Ge8, T = V, Cr, Mn). J Less-Common Met 57:133–146 (in French)Google Scholar
  228. 228.
    Blazina Z, Pavkovic SF (1989) On Friauf-Laves phases in the Ta1−xAlxT2 and Ta1−xSixT2 (T = Cr, Mn, Fe, Co, Ni) systems. J Less-Common Met 155:247–253Google Scholar
  229. 229.
    Zachwieja U, Jacobs H (1991) CuTaN2, a copper(I)-tantalum(V)-nitride with delafossite structure. Eur J Solid State Inorg Chem 28:1055–1062Google Scholar
  230. 230.
    Marchand R, Tessier F, DiSalvo FJ (1999) New routes to transition metal nitrides: preparation and characterization of new phases. J Mater Chem 9:297–304Google Scholar
  231. 231.
    Raghavan V (1987) Phase diagrams of ternary iron alloys, Part 1. The Indian Institute of metals, CalcuttaGoogle Scholar
  232. 232.
    Kuzma YuB, Marko MA, Petrovskaya MV (1972) Rentgenograficheskoe issledovanie troinykh sistem V-(Nb,Ta)-B, Nb-Ta-B i V-(Mo,W)-B (X-ray investigation of the ternary systems V-(Nb,Ta)-B, Nb-Ta-B and V-(Mo,W)-B). Visn Lviv Derzh Univ Ser Khim 13:3–8 (in Russian)Google Scholar
  233. 233.
    Rokhlin L (2010) Molybdenum – silicon – tantalum system. In: Effenberg G, Ilyenko S (eds) Ternary alloy systems, Subvol. E, Part 3, pp. 385–397. Springer, Berlin, HeidelbergGoogle Scholar
  234. 234.
    Frisk K, Dumitrescu L, Ekroth M, Jansson B, Kruse O, Sundman B (2001) Development of a database for cemented carbides: thermodynamic modeling and experiments. J Phase Equilib 22:645–655Google Scholar
  235. 235.
    Gasperin M (1960) Contribution a l’etude de quelques oxydes doubles que forme le tantale avec l’etain, l’uranium et le calcium. Application a la cassiterite et a la betafite (Contribution to the study of some double oxides formed tantalum with tin, uranium and calcium. Application of cassiterite and betafite) Bull Soc Fr Mineral Cristallogr 83:1–21 (in French)Google Scholar
  236. 236.
    Kudielka H, Nowotny H (1956) Disilizidsysteme (The disilicide systems) Monatsh Chem 87:471–482 (in German)Google Scholar
  237. 237.
    Steinmetz J, Roques B (1977) Une famille de siliciures ternaires isotypes de V6Si5: (T,T’)6Si5 ou T = V, Cr, Mn et T’ = Ti, Nb, Ta (A family of isotypic ternary silicides V6Si5: (T,T’)6Si5 or T = V, Cr, Mn and T’ = Ti, Nb, Ta). J Less-Common Met 52(2):247–258 (in French)Google Scholar
  238. 238.
    Raghavan V (1992) Phase diagrams of ternary iron alloys, Part 6B. The Indian Institute of metals, CalcuttaGoogle Scholar
  239. 239.
    Kumar KCH, Raghavan V (1989) B.c.c.-f.c.c. equilibrium in ternary iron alloys – II. J Alloy Phase Diagrams 5:77–96Google Scholar
  240. 240.
    Griessen R, Driessen A, De Groot DG (1984) Search for new metal-hydrogen systems for energy storage. J Less-Common Met 103:235–244Google Scholar
  241. 241.
    Kabanov SV, Subbotin IM, Loboda TP (1981) Fiziko-khimicheskoe issledovanie vzaimodeistviya molibdena i ruteniya s tantalom i volframom (Physico-chemical investigation of molybdenum and ruthenium with tantalum and tungsten interaction). In: Phase equilibria in metal alloys (Fazovye ravnovesiya v metallicheskikh splavakh), pp. 266–269. Nauka, Moscow (in Russian)Google Scholar
  242. 242.
    Subbotin IM, Raevskaya MV, Loboda TP, Sokolovskaya EM (1981) (Vzaimodeistvie molybdena i ruteniya s perekhodnymi metallami VI perioda (The reaction of molybdenum and ruthenium with transition metals of period VI). Moscow Univ Chem Bull 36(5):51–54 (in Russian)Google Scholar
  243. 243.
    Nikitin PN, Mikheyev VS (1971) Examination of the titanium corner of the Ti-Ta-Mo equilibrium diagram. Russ Metall (1):144–147Google Scholar
  244. 244.
    Weymann K, Müller H (1986) Deuterides of Nb-Ta, Nb-V and Ta-V solid solutions. J Less-Common Met 119:127–130Google Scholar
  245. 245.
    Ettmayer P, Vendl A (1980) Vorschlag zur Kristallstruktur des Komplexnitrids (Nb,Ta)8N9 (Proposition of complex nitride crystal structure of (Nb,Ta)8N9) J Less-Common Met 72:209–217 (in German)Google Scholar
  246. 246.
    Bernard VB, Burnasheva VV, Kuprina VV (1978) Issledovanie troinoi sistemy iridii-tantal-kobalt (A study of the ternary system iridium-tantalum-cobalt). Moscow Univ Chem Bull 33(1):40–43 (in Russian)Google Scholar
  247. 247.
    Bernard VB, Kuprina VV, Burnasheva VV (1973) Issledovanie troinoi sistemy iridii-tantal-nikel (Investigation of the ternary iridium-tantalum-nickel system). Moscow Univ Chem Bull 28(3):71–73 (in Russian)Google Scholar
  248. 248.
    Seung AC, Giessen BC, Grant NJ (1987) Formation of close-packed-ordered A(B1−xB’x)3-type intermediate phases in some metallic AB3-AB’3 pseudobinary alloy system. Rev Latinoam Metalurgia Materiales 7:27–35Google Scholar
  249. 249.
    Mishra R, Pöttgen R, Kotzyba G (2001) New metal-rich compounds NbIrSi, NbIrGe and TaIrSi – synthesis, structure and magnetic properties Z Naturforsch B 56:463–468Google Scholar
  250. 250.
    Mar A, Ibers JA (1992) Synthesis and physical properties of the new layered ternary tellurides MIrTe4 (M = Nb, Ta) and the structure of NbIrTe4. J Solid State Chem 97:366–376Google Scholar
  251. 251.
    Yamaguchi O, Tomihisa DO, Shirai M, Shimizu K (1988) Formation and transformation of solid solutions in the system Nb2O5-Ta2O5. J Am Ceram Soc 71:C260-C262Google Scholar
  252. 252.
    Raghavan V (2008) The Al-Ir-Ta (aluminum-iridium-tantalum) system. J Phase Equilib Diffus 29(4):370Google Scholar
  253. 253.
    Huang C, Yamabe-Mitarai Y, Harada H (2007) Morphology evolution of Ir-Nb-X (X = Hf, Ta, or Ti) ternary alloys. J Alloys Compd 428:220–229Google Scholar
  254. 254.
    Huang C, Yamabe-Mitarai Y, Nakazawa S, Nishida K, Harada H (2005) Investigation on phase relationships and creep properties of Ir-Nb-X (X = Hf, Ta, or Ti) ternary alloys. Mater Sci Eng A 412(1–2):191–197Google Scholar
  255. 255.
    Okamoto H (2013) The Fe-Ta (iron-tantalum) system. J Phase Equilib Diffus 34(2):165–166Google Scholar
  256. 256.
    Okamoto H (2013) The Al-Ta (aluminum-tantalum) system. J Phase Equilib Diffus 31(6):578–579Google Scholar
  257. 257.
    Guo Z, Yuan W, Sun Y, Cai Z, Qiao Z (2009) Thermodynamic assessment of the Si-Ta and Si-W systems. J Phase Equilib Diffus 30(5):564–570Google Scholar
  258. 258.
    Okamoto H (2008) The N-Ta (nitrogen-tantalum) system. J Phase Equilib Diffus 29(3):291Google Scholar
  259. 259.
    Chad VM, Ramos ECT, Coelho GC, Nunes CA, Suzuki PA, Ferreira F, Rogl P (2006) Evaluation of the invariant reactions in the Ta-rich region of the Ta-B system. J Phase Equilib Diffus 27(5):452–455Google Scholar
  260. 260.
    Okamoto H (2005) The Ta-V (tantalum-vanadium) system. J Phase Equilib Diffus 26(3):298–299Google Scholar
  261. 261.
    Okamoto H (2000) The Ni-Ta (nickel-tantalum) system. J Phase Equilib 21(5):497Google Scholar
  262. 262.
    Okamoto H (1996) The Ta-Zr (tantalum-zirconium) system. J Phase Equilib 17(6):555Google Scholar
  263. 263.
    Okamoto H (1996) The Cr-Ta (chromium-tantalum) system. J Phase Equilib 17(5):457Google Scholar
  264. 264.
    Okamoto H (1996) The Ni-Ta (nickel-tantalum) system. J Phase Equilib 17(4):371Google Scholar
  265. 265.
    Okamoto H (1996) The Hf-Ta (hafnium-tantalum) system. J Phase Equilib 17(3):270Google Scholar
  266. 266.
    Okamoto H (1996) The Fe-Ta (iron-tantalum) system. J Phase Equilib 17(1):81–82Google Scholar
  267. 267.
    Coelho GC, Neto JGC, Gama S, Ribeiro CA (1995) Experimental study of the iron-tantalum equilibrium diagram. J Phase Equilib 16(2):121–128Google Scholar
  268. 268.
    Schlesinger ME (1994) The Si-Ta (silicon-tantalum) system. J Phase Equilib 15(1):90–95Google Scholar
  269. 269.
    Okamoto H (1993) Comment on B-Ta (boron-tantalum) system. J Phase Equilib 14(3):393–394Google Scholar
  270. 270.
    Okamoto H (1992) The T-Ta (tritium-tantalum) system. J Phase Equilib 13(4):445–446Google Scholar
  271. 271.
    Okamoto H (1992) The D-Ta (deuterium-tantalum) system. J Phase Equilib 13(4):440–441Google Scholar
  272. 272.
    Garg SP, Krishnamurthy N (1992) The Te-Ta (tellurium-tantalum) system. J Phase Equilib 13(3):270–271Google Scholar
  273. 273.
    Garg SP, Krishnamurthy N (1992) The Bi-Ta (bismuth-tantalum) system. J Phase Equilib 13(3):269–270Google Scholar
  274. 274.
    Ordanyan SS, Vikhman SV, Nagaeva YuS (2011) Reaction of MoSi2 with niobium and tantalum diborides. Refract Indust Ceram 52(4):282–285Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Materials and Research CentreThe University of SalfordSalfordUK

Personalised recommendations