Advertisement

On the von Kries Model: Estimation, Dependence on Light and Device, and Applications

  • Michela LeccaEmail author
Chapter
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 11)

Abstract

The von Kries model is widely employed to describe the color variation between two pictures portraying the same scene but captured under two different lights. Simple but effective, this model has been proved to be a good approximation of such a color variation and it underpins several color constancy algorithms. Here we present three recent research results: an efficient histogram-based method to estimate the parameters of the von Kries model, and two theoretical advances, that clarify the dependency of these parameters on the physical cues of the varied lights and on the photometric properties of the camera used for the acquisition. We illustrate many applications of these results: color correction, illuminant invariant image retrieval, estimation of color temperature and intensity of a light, and photometric characterization of a device. We also include a wide set of experiments carried out on public datasets, in order to allow the reproducibility and the verification of the results, and to enable further comparisons with other approaches.

Keywords

Color and light von Kries model Estimation of the von Kries coefficients Dependence of the von Kries model on light and device Planck’s and Wien’s lights Color correction Illuminant invariant image retrieval Intensity and Color temperature of a light Device photometric characterization 

References

  1. 1.
    Agarwal V, Abidi BR, Koschan A, Abidi MA (2006) An overview of color constancy algorithms. J Pattern Recogn Res 1:42–56CrossRefGoogle Scholar
  2. 2.
    Agarwal V, Gribok AV, Abidi MA (2007) Neural networks letter: machine learning approach to color constancy. Neural Netw. 20(5):559–563zbMATHCrossRefGoogle Scholar
  3. 3.
    Athitsos V, Hadjieleftheriou M, Kollios G, Sclaroff S (2007) Query-sensitive embeddings. ACM Trans Database Syst 32(2):37Google Scholar
  4. 4.
    Barnard K (2000) Improvements to gamut mapping colour constancy algorithms. In: Proceedings of the 6th European conference on computer vision-Part I, ECCV ’00, London, UK. Springer, New York, pp 390–403Google Scholar
  5. 5.
    Barnard K, Cardei V, Funt B (2002) A comparison of computational color constancy algorithms. Part I: Methodology and experiments with synthesized data. IEEE Trans Image Process 11(9):972–984Google Scholar
  6. 6.
    Barnard K, Cardei V, Funt B (2002) A comparison of computational color constancy algorithms. Part II: experiments with image data. IEEE Trans Image Process 11(9):985–996Google Scholar
  7. 7.
    Barnard K, Ciurea F, Funt B (2001) Sensor sharpening for computational color constancy. J Opt Soc Am A 18:2728–2743CrossRefGoogle Scholar
  8. 8.
    Barnard K, Martin L, Funt B, Coath A (2002) A data set for color research. Color Res Appl 27(3):148–152Google Scholar
  9. 9.
    Berens J, Finlayson GD (2000) Log-opponent chromaticity coding of colour space. In: Proceedings of 15th international conference on pattern recognition, vol 1, pp 206–211Google Scholar
  10. 10.
    Brainard DH, Kraft JM, Longere P (2005) Color constancy: developing empirical tests of computational models. Oxford University Press, New YorkGoogle Scholar
  11. 11.
    Buchsbaum G (1980) A spatial processor model for object colour perception. J Franklin Inst 310(1):1–26MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ebner M (2007) Estimating the spectral sensitivity of a digital sensor using calibration targets. In: GECCO ’07: Proceedings of the 9th annual conference on genetic and evolutionary computation, ACM, pp 642–649Google Scholar
  13. 13.
    Finlayson C, Hordley S, Schaefer G, Tian GY (2003) Illuminant and device invariance using histogram equalisation. In: IS&T and SID’s 11th color imaging conference, pp 205–211Google Scholar
  14. 14.
    Finlayson G, Hordley S (1998) A theory of selection for gamut mapping color constancy. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, CVPR ’98, IEEE Computer Society, Washington, DCGoogle Scholar
  15. 15.
    Finlayson G, Hordley S (2001) Color constancy at a pixel. J Opt Soc Am A 18(2):253–264CrossRefGoogle Scholar
  16. 16.
    Finlayson G, Schaefer G, Tian GY (2000) The UEA uncalibrated colour image database. Technical report SYS-C00-07, School of Information Systems, University of East Anglia, Norwich, United KingdomGoogle Scholar
  17. 17.
    Finlayson GD, Drew MS, Funt BV (1993) Diagonal transforms suffice for color constancy. In: Proceedings of international conference of computer visionGoogle Scholar
  18. 18.
    Finlayson GD, Drew MS, Funt BV (1994) Color constancy: generalized diagonal transforms suffice. J Opt Soc Am A 11(11):3011–3019CrossRefGoogle Scholar
  19. 19.
    Finlayson GD, Drew MS, Funt BV (1994) Spectral sharpening: sensor transformations for improved color constancy. J Opt Soc Am A 11(5):1553–1563CrossRefGoogle Scholar
  20. 20.
    Finlayson GD, Hordley SD (2006) Gamut constrained illuminant estimation. Int J Comput Vis 67:2006CrossRefGoogle Scholar
  21. 21.
    Finlayson GD, Schiele B, Crowley JL (1998) Comprehensive colour image normalization. In: Proceedings of the 5th European conference on computer vision—volume I, ECCV ’98, Springer, London, pp 475–490Google Scholar
  22. 22.
    Finlayson GD, Hordley SD, HubeL PM (2001) Color by correlation: a simple, unifying framework for color constancy. IEEE Trans Pattern Anal Mach Intell 23(11):1209–1221Google Scholar
  23. 23.
    Forsyth DA (1990) A novel algorithm for color constancy. Int J Comput Visi 5(1):5–36MathSciNetCrossRefGoogle Scholar
  24. 24.
    Funt B, Barnard K, Martin L (1998) Is machine colour constancy good enough? In: Proceedings of the 5th European conference on computer vision. Springer, New York, pp 445–459Google Scholar
  25. 25.
    Gatta C, Rizzi A, Marini D (2002) Ace: an automatic color equalization algorithm. In: Proceedings of CGIV2002 IS T, Poitiers, FranceGoogle Scholar
  26. 26.
    Gehler PV, Rother C, Blake A, Minka T, Sharp T (2008) Bayesian color constancy revisited. In: Proceedings of computer vision and pattern recognition (CVPR), pp 1–8Google Scholar
  27. 27.
    Geusebroek JM, Burghouts GJ, Smeulders AWM (2005) The Amsterdam library of object images. Int J Comput Vis 61(1):103–112CrossRefGoogle Scholar
  28. 28.
    Gijsenij A, Gevers T, van de Weijer J (2011) Computational color constancy: survey and experiments. IEEE Trans Image Process 20(9):2475–2489Google Scholar
  29. 29.
    Gijsenij A, Gevers T, Weijer J (2010) Generalized gamut mapping using image derivative structures for color constancy. Int J Comput Vis 86(2–3):127–139CrossRefGoogle Scholar
  30. 30.
    Judd DB, MacAdam DL, Wyszecki G, Budde HW, Condit HR, Henderson ST, Simonds JL (1964) Spectral distribution of typical daylight as a function of correlated color temperature. J Opt Soc Am 54(8):1031–1036Google Scholar
  31. 31.
    Kelly KL (1963) Lines of constant correlated color temperature based on MacAdam’s (u,\(\upsilon \)) uniform chromaticity transformation of the CIE diagram. J Opt Soc Am 53(8):999–1002CrossRefGoogle Scholar
  32. 32.
    Lam KM (1985) Metamerism and Colour Constancy. University of Bradford, EnglandGoogle Scholar
  33. 33.
    Land EH (1977) The Retinex theory of color vision. Sci Am 237(6):108–128CrossRefGoogle Scholar
  34. 34.
    Lecca M, Messelodi S (2009) Computing von Kries illuminant changes by piecewise inversion of cumulative color histograms. Electron Lett Comput Vis Image Anal 8(2):1–17Google Scholar
  35. 35.
    Lecca M, Messelodi S (2009) Illuminant change estimation via minimization of color histogram divergence. In: Computational color imaging workshop—CCIW. LNCS, vol 5646/2009. S. Etienne, France, pp 41–50Google Scholar
  36. 36.
    Lecca M, Messelodi S (2011) Linking the von Kries model to Wien’s law for the estimation of an illuminant invariant image. Pattern Recogn Lett 32(15):2086–2096CrossRefGoogle Scholar
  37. 37.
    Lecca M, Messelodi S (2011) Von Kries model under Planckian illuminants. In: 16th International conference on image analysis and processing—ICIAP. Lecture notes in computer science, vol 6978. Ravenna, Italy, pp 296–305Google Scholar
  38. 38.
    Lecca M, Messelodi S, Andreatta C (2007) An object recognition system for automatic image annotation and browsing of object catalogs. In: Proceedings of the 15th international conference on multimedia, MULTIMEDIA ’07. ACM, pp 154–155Google Scholar
  39. 39.
    Leichter I, Lindenbaum M, Rivlin E (2010) Mean shift tracking with multiple reference color histograms. Comput Vis Image Underst 114(3):400–408CrossRefGoogle Scholar
  40. 40.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRefGoogle Scholar
  41. 41.
    Lu R, Gijsenij A, Gevers T, Nedovic V, Xu D, Geusebroek JM (2009) Color constancy using 3D scene geometry. In: Proceedings of ICCV, pp 1749–1756Google Scholar
  42. 42.
    Marimont DH, Wandell BA (1992) Linear models of surface and illuminant spectra. J Opt Soc Am A 9:1905–1913CrossRefGoogle Scholar
  43. 43.
    McCamy CS (1992) Correlated color temperature as an explicit function of chromaticity coordinates. Color Res Appl 17(2):142–144CrossRefGoogle Scholar
  44. 44.
    Nayar SK, Ikeuchi K, Kanade T (1991) Surface reflection: physical and geometrical perspectives. IEEE Trans Pattern Anal Mach Intell 13:611–634CrossRefGoogle Scholar
  45. 45.
    Ojala T, Topi M, Pietikäinen M, Viertola J, Kyllönen J, Huovinen S (2002) Outex: new framework for empirical evaluation of texture analysis algorithms. In: Proceedings of ICPR’02, vol 1, IEEE Computer SocietyGoogle Scholar
  46. 46.
    Reinhard E, Adhikhmin M, Gooch B, Shirley P (2001) Color transfer between images. IEEE Comput Graph Appl 21(5):34–41Google Scholar
  47. 47.
    Rosenberg C, Minka T, Ladsariya A (2004) Bayesian color constancy with non-gaussian models. In: Thrun S, Saul L, Schölkopf B (eds) Advances in neural information processing systems, vol 16. MIT Press, CambridgeGoogle Scholar
  48. 48.
    Schaefer G (2011) Colour for image retrieval and image browsing. In: Proceedings of ELMAR, 2011, pp 1–3Google Scholar
  49. 49.
    Siang Tan K, Mat I, Nor A (2011) Color image segmentation using histogram thresholding: fuzzy c-means hybrid approach. Pattern Recogn 44(1):1–15zbMATHCrossRefGoogle Scholar
  50. 50.
    Skaff S, Arbel T, Clark JJ (2002) Active Bayesian color constancy with non-uniform sensors. In: Proceedings of 16th international conference on pattern recognition, vol 2, pp 681–684Google Scholar
  51. 51.
    Tominaga S, Ishida A, Wandell BA (2007) Color temperature estimation of scene illumination by the sensor correlation method. Syst Comput Jpn 38(8):95–108CrossRefGoogle Scholar
  52. 52.
    Unnikrishnan R, Hebert M(2006) Extracting scale and illuminant invariant regions through color. In: Proceedings of BMVC, pp 52.1-52.10. doi:  10.5244/C.20.52
  53. 53.
    van de Sande K, Gevers T, Snoek C (2010) Evaluating color descriptors for object and scene recognition. IEEE Trans Pattern Anal Mach Intell 32(9):1582–1596CrossRefGoogle Scholar
  54. 54.
    van de Weijer J, Gevers T, Geusebroek J-M (2005) Edge and corner detection by photometric quasi-invariants. IEEE Trans Pattern Anal Mach Intell 27(4):625–630CrossRefGoogle Scholar
  55. 55.
    van de Weijer J, Gevers T, Gijsenij A (2007) Edge-based color constancy. IEEE Trans Image Process 16(9):2207–2214Google Scholar
  56. 56.
    Vergés-Llahí J, Sanfeliu A (2005) A new color constancy algorithm based on the histogram of feasible mappings. In: Proceedings of the 2nd international conference on image analysis and recognition, ICIAR’05. Springer, Berlin, pp 720–728Google Scholar
  57. 57.
    Takahama K, Nayatani Y, Sobagaki H (1981) Formulation of a nonlinear model of chromatic adaptation. Color Res Appl 6(3):161–171Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Fondazione Bruno KesslerTrentoItaly

Personalised recommendations