Skip to main content

Microphenomics for Interactions of Barley with Fungal Pathogens

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

Current high-throughput plant phenotyping pipelines are mainly focused on quantitative assessment of macroscopic parameters. Such morphological or physiological parameters measured on entire plants or major plant parts are not well adapted to the accurate description of plant-pathogen interactions because plant pathogens are microorganisms causing only microscale changes in their hosts or non-hosts during the initial stages on infection, which often decide about susceptibility or resistance. This makes the use of microscopic phenomics techniques unavoidable. However, the high-throughput requirements of modern phenomics screens represent a considerable challenge to the available microscopic approaches and underlying instruments used to characterize plant-pathogen interactions. To meet this challenge we have developed a platform that combines high-throughput DNA cloning, single cell transformation protocols, and automated microscopy and phenotyping that we called “microphenomics”. It was used to address the function of genes in nonhost- and race-nonspecific host resistance of barley interacting with the powdery mildew fungus Blumeria graminis. More than 1,300 genes derived from plant or fungal genomes were tested by silencing and approximately 100 of them had a significant effect on the resistance or susceptibility to the pathogen. The chapter gives an overview on the current status of this microphenomics platform for very early and early stages of plant-pathogen interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baum T, Navarro-Quezada A, Knogge W et al (2011) HyphArea-Automated analysis of spatiotemporal fungal patterns. J Plant Physiol 168:72–78

    Article  CAS  PubMed  Google Scholar 

  • Bauriegel E, Giebel A, Herppich WB (2011) Hyperspectral and chlorophyll fluorescence imaging to analyse the impact of fusarium culmorum on the photosynthetic integrity of infected wheat ears. Sensors 11:3765–3779

    Article  CAS  PubMed  Google Scholar 

  • Beyer A, Hollunder J, Nasheuer HP et al (2004) Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Mol Cell Proteomics 3:1083–1092

    Article  CAS  PubMed  Google Scholar 

  • Bhullar NK, Street K, Mackay M et al (2009) Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. P Natl Acad Sci USA 106:9519–9524

    Article  CAS  Google Scholar 

  • Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-Type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Brenner S, Johnson M, Bridgham J et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    Article  CAS  PubMed  Google Scholar 

  • Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16:2514–2528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting (vol 39, pg e82, 2011). Nucleic Acids Res 39:7879–7879

    Article  CAS  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S et al (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–412

    Article  CAS  PubMed  Google Scholar 

  • Close, TJ; Bhat, PR; Lonardi, S; Wu, YH; Rostoks, N; Ramsay, L; Druka, A; Stein, N; Svensson, JT; Wanamaker, S; Bozdag, S; Roose, ML; Moscou, MJ; Chao, SAM; Varshney, RK; Szucs, P; Sato, K; Hayes, PM; Matthews, DE; Kleinhofs, A; Muehlbauer, GJ; DeYoung, J; Marshall, DF; Madishetty, K; Fenton, RD; Condamine, P; Graner, A; Waugh, R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC GENOMICS 10:582

    Google Scholar 

  • Close TJ, Wanamaker SI, Caldo RA et al (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960–968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crouzet J, Trombik T, Fraysse AS et al (2006) Organization and function of the plant pleiotropic drug resistance ABC transporter family. Febs Letters 580:1123–1130

    Article  CAS  PubMed  Google Scholar 

  • Dammer KH, Moller B, Rodemann B et al (2011) Detection of head blight (Fusarium ssp.) in winter wheat by color and multispectral image analyses. Crop Protection 30:420–428

    Article  Google Scholar 

  • De Coninck BMA, Amand O, Delaure SL et al (2012) The use of digital image analysis and real-time PCR fine-tunes bioassays for quantification of Cercospora leaf spot disease in sugar beet breeding. Plant Pathol 61:76–84

    Article  CAS  Google Scholar 

  • Dong WB, Nowara D, Schweizer P (2006) Protein polyubiquitination plays a role in basal host resistance of barley. Plant Cell 18:3321–3331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Douchkov D, Nowara D, Zierold U et al (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol Plant Microbe In 18:755–761

    Article  CAS  Google Scholar 

  • Druka A, Franckowiak J, Lundqvist U et al (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duggal V, Jellis GJ, Hollins TW et al (2000) Resistance to powdery mildew in mutant lines of the susceptible wheat cultivar Hobbit ’sib’. Plant Pathol 49:468–476

    Article  Google Scholar 

  • Errampalli D, Patton D, Castle L et al (1991) Embryonic Lethals and T-DNA Insertional Mutagenesis in Arabidopsis. Plant Cell 3:149–157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S et al (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Frommer WB, Chen LQ, Hou BH et al (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–199

    Article  PubMed Central  PubMed  Google Scholar 

  • Gomez-Gomez L, Bauer Z, Boller T (2001) Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13:1155–1163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez R, Woods R, Eddins S (2004) Digital image processing using MATLAB. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Gonzalez-Lamothe R, Tsitsigiannis DI, Ludwig AA et al (2006) The U-Box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. Plant Cell 18:1067–1083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heese A, Hann DR, Gimenez-Ibanez S et al (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. P Natl Acad Sci USA 104:12217–12222

    Article  CAS  Google Scholar 

  • Ihlow A, Schweizer P, Seiffert U (2008) A high-throughput screening system for barley/powdery mildew interactions based on automated analysis of light micrographs. BMC Plant Biol 8:6

    Google Scholar 

  • Iizasa E, Mitsutomi M, Nagano Y (2010) Direct Binding of a Plant LysM Receptor-like Kinase, LysM RLK1/CERK1, to Chitin in Vitro. J Biol Chem 285:2996–3004

    Google Scholar 

  • Jasinski M, Stukkens Y, Degand H et al (2001) A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13:1095–1107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirsten S, Navarro-Quezada A, Penselin D et al (2012) Necrosis-Inducing Proteins of Rhynchosporium commune, Effectors in Quantitative Disease Resistance. Mol Plant Microbe In 25:1314–1325

    Article  CAS  Google Scholar 

  • Kobae Y, Sekino T, Yoshioka H et al (2006) Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 47:309–318

    Article  CAS  PubMed  Google Scholar 

  • Kumlehn J, Serazetdinova L, Hensel G et al (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol J 4:251–261

    Article  CAS  PubMed  Google Scholar 

  • Kuromori T, Takahashi S, Kondou Y et al (2009) Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiol 50:1215–1231

    Article  CAS  PubMed  Google Scholar 

  • Lacomme C, Hrubikova K, Hein I (2003) Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. Plant J 34:543–553

    Article  CAS  PubMed  Google Scholar 

  • Lagudah ES, Krattinger SG, Spielmeyer W et al (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  PubMed  Google Scholar 

  • Li T, Liu B, Spalding MH et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Lipka V, Gimenez-Ibanez S, Hann DR et al (2009) AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Biol 19:423–429

    Article  PubMed  Google Scholar 

  • Lipka V, Petutschnig EK, Jones AME et al (2010) The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 285:28902–28911

    Article  PubMed  Google Scholar 

  • Lu D, Wu S, He P et al (2010) Phosphorylation of receptor-like cytoplasmic kinases by bacterial flagellin. Plant Signal Behav 5:598–600

    Google Scholar 

  • Maeda I, Kohara Y, Yamamoto M et al (2001) Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol 11:171–176

    Article  CAS  PubMed  Google Scholar 

  • Mahlein AK, Oerke EC, Steiner U et al (2012a) Recent advances in sensing plant diseases for precision crop protection. Eur J Plant Pathol 133:197–209

    Article  CAS  Google Scholar 

  • Mahlein AK, Steiner U, Hillnhutter C et al (2012b) Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods 8:3

    Google Scholar 

  • Martinoia E, Klein M, Geisler M et al (2002) Multifunctionality of plant ABC transporters - more than just detoxifiers. Planta 214:345–355

    Article  CAS  PubMed  Google Scholar 

  • Matsuda Y, Toyoda H, Morita M et al (1994) A novel method for In Situ hybridization in fungal cells based on pricking micro–injection of photobiotin labelled probes. J Phytopathol 141:133–142

    Article  CAS  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. The Plant Cell Online 23:1249–1263

    Article  CAS  Google Scholar 

  • Mayer KFX, Waugh R, Langridge P et al (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    CAS  PubMed  Google Scholar 

  • Mazzucotelli E, Belloni S, Marone D et al (2006) The e3 ubiquitin ligase gene family in plants: regulation by degradation. Curr Genomics 7:509–522

    Article  CAS  PubMed  Google Scholar 

  • Nowara D, Gay A, Lacomme C et al (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ouchi S, Oku H, Hibino C et al (1974) Induction of accessibility and resistance in leaves of barley by some races of Erysiphe graminis. J Phytopathol 79:24–34

    Article  Google Scholar 

  • Panstruga R, Schulze-Lefert P (2002) Live and let live: insights into powdery mildew disease and resistance. Mol Plant Pathol 3:495–502

    Article  CAS  PubMed  Google Scholar 

  • Pedreno MA, Almagro L, Ros LVG et al (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390

    Article  PubMed  Google Scholar 

  • Peressotti E, Duchene E, Merdinoglu D et al (2011) A semi-automatic non-destructive method to quantify grapevine downy mildew sporulation. J Microbiol Meth 84:265–271

    Article  Google Scholar 

  • Reynolds MP, Borlaug NE (2006) Impacts of breeding on international collaborative wheat improvement. J Agr Sci 144:3–17

    Article  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P et al (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Schweizer P, Stein N (2011) Large-scale data integration reveals colocalization of gene functional groups with meta-QTL for multiple disease resistance in barley. Mol Plant Microbe Interact 24:1492–1501

    Article  CAS  PubMed  Google Scholar 

  • Schweizer P, Gees R, Mosinger E (1993) Effect of jasmonic acid on the interaction of Barley (Hordeum vulgare L.) with the powdery mildew Erysiphe graminis f. sp. hordei. Plant Physiol 102:503–511

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schweizer P, Christoffel A, Dudler R (1999) Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance. Plant J 20:540–552

    Article  Google Scholar 

  • Schweizer P, Pokorny J, Schulze-Lefert P et al (2000) Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant J 24:895–903

    Article  CAS  PubMed  Google Scholar 

  • Seiffert U, Schweizer P (2005) A pattern recognition tool for quantitative analysis of in planta hyphal growth of powdery mildew fungi. Mol Plant Microbe In 18:906–912

    Google Scholar 

  • Shen LH, Gong J, Caldo RA et al (2005) BarleyBase—an expression profiling database for plant genornics. Nucleic Acids Res 33:D614–D618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shibuya N, Miya A, Albert P et al (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. P Natl Acad Sci USA 104:19613–19618

    Article  Google Scholar 

  • Shirasu K, Trujillo M, Ichimura K et al (2008) Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr Biol 18:1396–1401

    Article  PubMed  Google Scholar 

  • Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543

    Article  CAS  PubMed  Google Scholar 

  • Shiu SH, Lehti-Shiu MD, Zou C et al (2009) evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol 150:12–26

    Article  PubMed Central  PubMed  Google Scholar 

  • Slovakova L (1991) Induced resistance of barley plants against powdery mildew (Erysiphe graminis f.sp. hordei Marchal).1. Influence of inducers on primary infection. Biologia 46:737–744

    Google Scholar 

  • Song WY, Wang GL, Chen LL et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Stein M, Dittgen J, Sanchez-Rodriguez C et al (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stenzel K, Steiner U, Schonbeck F (1985) Effect of induced resistance on the efficiency of powdery mildew haustoria in wheat and barley. Physiol Plant Pathol 27:357–367

    Article  Google Scholar 

  • Tingay S, McElroy D, Kalla R et al (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  • Trujillo M, Shirasu K (2010) Ubiquitination in plant immunity. Curr Opin Plant Biol 13:402–408

    Article  CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B et al (1995) Serial analysis of gene-expression. Science 270:484–487

    Article  CAS  PubMed  Google Scholar 

  • Wang GL, Song WY, Ruan DL et al (1996) The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol Plant Microbe In 9:850–855

    Article  CAS  Google Scholar 

  • Wang L, Li PH, Brutnell TP (2010) Exploring plant transcriptomes using ultra high-throughput sequencing. Brief Funct Genomics 9:118–128

    Article  CAS  PubMed  Google Scholar 

  • Warringer J, Ericson E, Fernandez L et al (2003) Yeast phenomics on a genome-wide scale. Yeast 20:S338–S338

    Article  Google Scholar 

  • Wielopolska A, Townley H, Moore I et al (2005) A high-throughput inducible RNAi vector for plants. Plant Biotechnol J 3:583–590

    Article  CAS  PubMed  Google Scholar 

  • Wijekoon CP, Goodwin PH, Hsiang T (2008) Quantifying fungal infection of plant leaves by digital image analysis using Scion Image software. J Microbiol Meth 74:94–101

    Article  CAS  Google Scholar 

  • Wise R, Caldo R, Hong L et al (2006) PLEXdb: a unifited expression prolfiling database for plants and plant pathogens. Phytopathology 96:S161–S161

    Google Scholar 

  • Wise RP, Caldo RA, Hong L et al (2007) Barleybase/PLEXdb. A unified expression profiling database for plants and plant pathogens. Methods Mol Biol 406:347–363

    CAS  PubMed  Google Scholar 

  • Wise RP, Lauter N, Szabo LJ et al (2009) Genomics of biotic interactions in the Triticeae. Genetics and genomics of the triticeae. C. F. G. J. muehlbauer. Springer 7:559–589

    Google Scholar 

  • Yang CW, Gonzalez-Lamothe R, Ewan RA et al (2006) The E3 ubiquitin ligase activity of Arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense. Plant Cell 18:1084–1098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yazaki K, Shitan N, Sugiyama A et al (2009) Cell and molecular biology of ATP-binding cassette proteins in plants. Int Rev Cell Mol Biol 276:263–299

    Article  PubMed  Google Scholar 

  • Zellerhoff N, Himmelbach A, Dong WB et al (2010) Nonhost resistance of barley to different fungal pathogens is associated with largely distinct, quantitative transcriptional responses. Plant Physiol 152:2053–2066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang HN, Sreenivasulu N, Weschke W et al (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J 40:276–290

    Article  PubMed  Google Scholar 

  • Zhang J, Li W, Xiang T et al (2010) Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7:290–301

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Palotta M, Langridge P et al (2006) Mapped Ds/T-DNA launch pads for functional genomics in barley. Plant J 47:811–826

    Article  PubMed  Google Scholar 

  • Zhu LH, Gan QA, Bai H et al (2011) Transcriptional characteristics of xa21-mediated defense responses in rice. J Integr Plant Biol 53:300–311

    Article  PubMed  Google Scholar 

  • Zierold U, Scholz U, Schweizer P (2005) Transcriptome analysis of mlo-mediated resistance in the epidermis of barley. Mol Plant Pathol 6:139–151

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D et al (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to tank to Aura Navarro-Quezada and Wolfgang Knogge from the Leibniz-Institute of Plant Biochemistry, Department of Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany for providing the R. secalis fluorescence microscopy images. We are especially grateful to Stefanie Lück and Gabriele Brantin from IPK for the excellent technical work. Work of own research was supported by IPK (to P.S.), the German Ministry of Education and Research BMBF (to P.S. and U.S.), and by BASF Plant Science GmbH (to P.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitar Douchkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Douchkov, D., Baum, T., Ihlow, A., Schweizer, P., Seiffert, U. (2014). Microphenomics for Interactions of Barley with Fungal Pathogens. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7575-6_5

Download citation

Publish with us

Policies and ethics