Next Generation Sequencing and Germplasm Resources

  • Paul Visendi
  • Jacqueline Batley
  • David EdwardsEmail author


DNA sequencing technology is advancing at an astounding rate, with rapid increases in data volumes and quality combined with reducing costs. The availability of this technology opens novel avenues for the analysis of plant germplasm resources. Where previous studies analysed a limited number of phenotypic or molecular genetic markers, it is now possible to re-sequence whole genomes to characterise diversity at a resolution of each nucleotide. Current approaches combine high resolution genetic markers with genome sequencing both for reference assembly and genotyping by sequencing. As next generation sequencing technologies continue to advance, we approach the potential to catalogue and characterise all genome variations across diverse germplasm to gain a greater understanding of how the genome contributes to the diversity seen in today’s plants.


Genome sequencing Pangenome Illumina Ion Torrent AB SOLiD Pacific biosciences Oxford nanopore Roche 454 Single nucleotide polymorphisms Bioinformatics 


  1. Allen AM, Barker GLA, Berry ST et al (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotech J 9:1086–1099Google Scholar
  2. Appleby N, Edwards D, Batley J (2009) New technologies for ultra-high throughput genotyping in plants. In: Somers D, Langridge P, Gustafson J (eds) Plant Genomics. Humana Press (USA), pp 19–40Google Scholar
  3. Argout X, Salse J, Aury JM et al (2011) The genome of Theobroma cacao. Nat Genet 43:101–108PubMedGoogle Scholar
  4. Azam S, Thakur V, Ruperao P et al (2012) Coverage-based consensus calling (CbCC) of short sequence reads and comparison of CbCC results to identify SNPs in chickpea (Cicer arietinum; Fabaceae), a crop species without a reference genome. Am J Bot 99:186–192PubMedGoogle Scholar
  5. Barbazuk WB, Emrich SJ, Chen HD et al (2007) SNP discovery via 454 transcriptome sequencing. Plnat J 51:910–918Google Scholar
  6. Barker G, Batley J, O’Sullivan H et al (2003) Redundancy based detection of sequence polymorphisms in expressed sequence tag data using autoSNP. Bioinformatics 19:421–422PubMedGoogle Scholar
  7. Barry GF (2001) The use of the Monsanto draft rice genome sequence in research. Plant Physiol 125:1164–1165PubMedCentralPubMedGoogle Scholar
  8. Batley J, Barker G, O’Sullivan H et al (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91PubMedCentralPubMedGoogle Scholar
  9. Batley J, Edwards D (2007) SNP applications in plants. In: Oraguzie N, Rikkerink E, Gardiner S, De Silva H (eds) Association Mapping in Plants. Springer, New York, pp 95–102Google Scholar
  10. Batley J, Edwards D (2009a) Genome sequence data: management, storage, and visualization. Biotechniques 46:333–336Google Scholar
  11. Batley J, Edwards D (2009b) Mining for Single Nucleotide Polymorphism (SNP) and Simple Sequence Repeat (SSR) molecular genetic markers. In: Posada D (ed) Bioinformatics for DNA Sequence Analysis. Humana Press (USA), pp 303–322Google Scholar
  12. Berkman PJ, Skarshewski A, Lorenc MT et al (2011a) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol J 9:768–775Google Scholar
  13. Berkman PJ, Skarshewski A, Lorenc MT et al (2011b) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol J 9:768–775Google Scholar
  14. Berkman PJ, Lai K, Lorenc MT, Edwards D (2012a) Next-generation sequencing applications for wheat crop improvement. Am J Bot 99:365–371Google Scholar
  15. Berkman PJ, Skarshewski A, Manoli S et al (2012b) Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor Appl Genet 124:423–432Google Scholar
  16. Berkman PJ, Visendi P, Lee HC et al (2013) Dispersion and domestication shaped the genome of bread wheat. Plant Biotechnol JGoogle Scholar
  17. Bertioli DJ, Moretzsohn MC, Madsen LH et al (2009) An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics 10:45PubMedCentralPubMedGoogle Scholar
  18. Bock R (2010) The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci 15:11–22PubMedGoogle Scholar
  19. Börner AB, Schumann ES, Fürste AF et al (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936PubMedGoogle Scholar
  20. Breen J, Wicker T, Kong X et al (2010) A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block. Bmc Plant Biol 10:98PubMedCentralPubMedGoogle Scholar
  21. Brunner AM, Busov VB, Strauss SH (2004) Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends Plant Sci 9:49–56PubMedGoogle Scholar
  22. Cannon SB, Sterck L, Rombauts S et al (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci U S A 103:14959–14964PubMedCentralPubMedGoogle Scholar
  23. Carter A, Garland-Campbell K, Morris C, Kidwell K (2012) Chromosomes 3B and 4D are associated with several milling and baking quality traits in a soft white spring wheat (Triticum aestivum L.) population. Theor Appl Genet 124:1079–1096PubMedGoogle Scholar
  24. Chan AP, Crabtree J, Zhao Q et al (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–956PubMedCentralPubMedGoogle Scholar
  25. Consortium TTG (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641Google Scholar
  26. Cuesta–Marcos A, Szucs P, Close TJ et al (2010) Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure. BMC Genomics 11:707PubMedCentralPubMedGoogle Scholar
  27. Darracq A, Varre JS, Touzet P (2010) A scenario of mitochondrial genome evolution in maize based on rearrangement events. BMC Genomics 11:233PubMedCentralPubMedGoogle Scholar
  28. Dolezel J, Kubalakova M, Bartos J, Macas J (2004) Flow cytogenetics and plant genome mapping. Chromosome Res 12:77–91PubMedGoogle Scholar
  29. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321PubMedGoogle Scholar
  30. Dong CH, Li C, Yan XH et al (2011) Gene expression profiling of Sinapis alba leaves under drought stress and rewatering growth conditions with Illumina deep sequencing. Mol Biol Rep 39:5851–7PubMedGoogle Scholar
  31. Duran C, Appleby N, Clark T et al (2009a) AutoSNPdb: an annotated single nucleotide polymorphism database for crop plants. Nucleic Acids Res 37:D951–953Google Scholar
  32. Duran C, Appleby N, Edwards D, Batley J (2009b) Molecular genetic markers: discovery, applications, data storage and visualisation. Curr Bioinform 4:16–27Google Scholar
  33. Duran C, Appleby N, Vardy M et al (2009c) Single nucleotide polymorphism discovery in barley using autoSNPdb. Plant Biotechnol J 7:326–333Google Scholar
  34. Duran C, Edwards D, Batley J (2009d) Genetic maps and the use of synteny. In: Somers D, Langridge P, Gustafson J (eds) Plant Genomics. Humana Press (USA), pp 41–56Google Scholar
  35. Duran C, Eales D, Marshall D et al (2010) Future tools for association mapping in crop plants. Genome 53:1017–1023PubMedGoogle Scholar
  36. Duran C, Singhania R, Raman H et al (2013) Predicting polymorphic EST-SSRs in silico. Mol Ecol Resour 13:538–45Google Scholar
  37. Edwards D, Forster JW, Chagné D, Batley J (2007a) What are SNPs? In: Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (eds) Association Mapping in Plants Springer NY, pp 41–52Google Scholar
  38. Edwards D, Forster JW, Cogan NOI et al (2007b) Single Nucleotide Polymorphism Discovery. In: Oraguzie N, Rikkerink E, Gardiner S, De Silva H (eds) Association Mapping in Plants. Springer New York, pp 53–76Google Scholar
  39. Edwards D, Hansen D, Stajich J (2009) DNA Sequence Databases. In: Edwards D, Hanson D, Stajich J (eds) Applied Bioinformatics. Springer (USA), pp 1–11Google Scholar
  40. Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 7:1–8Google Scholar
  41. Edwards D, Wang X (2012) Genome Sequencing Initiatives. In: Edwards D, Parkin IAP, Batley J (eds) Genetics, Genomics and Breeding of Oilseed Brassicas. Science Publishers Inc., New Hampshire, (USA), pp 152–157Google Scholar
  42. Edwards D, Wilcox S, Barrero RA et al (2012) Bread matters: a national initiative to profile the genetic diversity of Australian wheat. Plant Biotechnol J 10:703–708PubMedGoogle Scholar
  43. Edwards D, Batley J, Snowdon R (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11PubMedGoogle Scholar
  44. Feuillet C, Leach JE, Rogers J et al (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16:77–88PubMedGoogle Scholar
  45. George J, Sawbridge TI, Cogan NO et al (2008) Comparison of genome structure between white clover and Medicago truncatula supports homoeologous group nomenclature based on conserved synteny. Genome 51:905–911PubMedGoogle Scholar
  46. Gill BS, Appels R, Botha-Oberholster AM et al (2004) A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics 168:1087–1096PubMedCentralPubMedGoogle Scholar
  47. Goff SA, Ricke D, Lan TH et al (2002a) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Sci 296:92–100Google Scholar
  48. Goff SA, Ricke D, Lan TH et al (2002b) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Sci 296:92–100Google Scholar
  49. Grover CE, Salmon A, Wendel JF (2012) Targeted sequence capture as a powerful tool for evolutionary analysis1. Am J Bot 99:312–319PubMedGoogle Scholar
  50. Gu YQ, Ma Y, Huo N et al (2009) A BAC-based physical map of Brachypodium distachyon and its comparative analysis with rice and wheat. BMC Genomics 10:496PubMedCentralPubMedGoogle Scholar
  51. Hall BG, Ehrlich GD, Hu FZ (2010) Pan-genome analysis provides much higher strain typing resolution than multi-locus sequence typing. Microbiol 156:1060–1068Google Scholar
  52. Hao C, Perretant M, Choulet F et al (2010) Genetic diversity and linkage disequilibrium studies on a 3.1-Mb genomic region of chromosome 3B in European and Asian bread wheat (Triticum aestivum L.) populations. Theor Appl Genet 121:1209–1225PubMedGoogle Scholar
  53. Hao Z, Li X, Xie C et al (2011) Identification of functional genetic variations underlying drought tolerance in maize using SNP markers. J integrat plant biol 53:641–652Google Scholar
  54. Hayward A, Dalton-Morgan J, Mason A et al (2012a) SNP discovery and applications in Brassica napus. J Plant Biotechnol (in press)Google Scholar
  55. Hayward A, Vighnesh G, Delay C et al (2012b) Second-generation sequencing for gene discovery in the Brassicaceae. Plant Biotechnol J 10:750–759Google Scholar
  56. Henry R, Edwards K (2009) New tools for single nucleotide polymorphism (SNP) discovery and analysis accelerating plant biotechnology. Plant Biotechnol J 7:311PubMedGoogle Scholar
  57. Hernandez P, Martis M, Dorado G et al (2011) NGS and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J 69:377–386PubMedGoogle Scholar
  58. Horvath A, Didier A, Koenig J et al (2009) Analysis of diversity and linkage disequilibrium along chromosome 3B of bread wheat (Triticum aestivum L.). Theor Appl Genet 119:1523–1537PubMedGoogle Scholar
  59. Hu TT, Pattyn P, Bakker EG et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481PubMedCentralPubMedGoogle Scholar
  60. Huang S, Li R, Zhang Z et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281PubMedGoogle Scholar
  61. Huang XH, Wei XH, Sang T et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–976PubMedGoogle Scholar
  62. Hyten DL, Song Q, Zhu Y et al (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci U S A 103:16666–16671PubMedCentralPubMedGoogle Scholar
  63. Imelfort M, Edwards D (2009) De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform 10:609–618PubMedGoogle Scholar
  64. Imelfort M, Batley J, Grimmond S, Edwards D (2009a) Genome sequencing approaches and successes. In: Somers D, Langridge P, Gustafson J (eds) Plant Genomics. Humana Press (USA), pp 345–358Google Scholar
  65. Imelfort M, Duran C, Batley J, Edwards D (2009b) Discovering genetic polymorphisms in next-generation sequencing data. Plant Biotechnol J 7:312–317Google Scholar
  66. International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768Google Scholar
  67. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800Google Scholar
  68. Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467PubMedGoogle Scholar
  69. Janda J, Bartos J, Safar J et al (2004) Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theor Appl Genet 109:1337–1345PubMedGoogle Scholar
  70. Jiang Q, Yen SH, Stiller J et al (2012) Diversity Analysis of the Tree Legume Pongamia pinnata using PISSRs (Pongamia Inter-Simple Sequence Repeats). J Plant Genome Sci (in press)Google Scholar
  71. Kazakoff SH, Imelfort M, Edwards D et al (2012) Capturing the Biofuel Wellhead and Powerhouse: The Chloroplast and Mitochondrial Genomes of the Leguminous Feedstock Tree Pongamia pinnata. Plos One 7:51687Google Scholar
  72. Kim SY, Lohmueller KE, Albrechtsen A et al (2011) Estimation of allele frequency and association mapping using next-generation sequencing data. BMC Bioinformatics 12:231PubMedCentralPubMedGoogle Scholar
  73. Kircher M, Heyn P, Kelso J (2011) Addressing challenges in the production and analysis of illumina sequencing data. BMC Genomics 12:382PubMedCentralPubMedGoogle Scholar
  74. Kubaláková M, Vrána J, Číhalíková J et al (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor Appl Genet 104:1362–1372PubMedGoogle Scholar
  75. Lai JS, Li RQ, Xu X et al (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:1027–1158PubMedGoogle Scholar
  76. Lai K, Berkman PJ, Lorenc MT et al (2012a) An integrated database and portal for wheat genome information. Plant Cell Physiol 53:1–7Google Scholar
  77. Lai K, Duran C, Berkman PJ et al (2012b) Single nucleotide polymorphism discovery from wheat next-generation sequence data. Plant Biotechnol J 10:743–749Google Scholar
  78. Lai K, Lorenc MT, Edwards D (2012c) Genomic databases for crop improvement. Agronomy 2:62–73Google Scholar
  79. Laing C, Buchanan C, Taboada EN et al (2010) Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions. BMC Bioinformatics 11:461PubMedCentralPubMedGoogle Scholar
  80. Lam HM, Xu X, Liu X et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1041PubMedGoogle Scholar
  81. Lee GA, Crawford GW, Liu L et al (2011a) Archaeological soybean (Glycine max) in East Asia: does size matter? PLoS One 6:26720Google Scholar
  82. Lee H, Lai K, Lorenc MT et al (2011b) Bioinformatics tools and databases for analysis of next generation sequence data. Briefings in Functional Genomics (in press)Google Scholar
  83. Lee H, Lai K, Lorenc MT et al (2012) Bioinformatics tools and databases for analysis of next generation sequence data. Brief Funct Genomics 2:12–24Google Scholar
  84. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993PubMedCentralPubMedGoogle Scholar
  85. Li R, Li Y, Zheng H et al (2010a) Building the sequence map of the human pan-genome. Nat Biotechnol 28:57–63Google Scholar
  86. Li YH, Li W, Zhang C et al (2010b) Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci. The New phytologist 188:242–253Google Scholar
  87. Lieberman KR, Cherf GM, Doody MJ et al (2010) Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. J Am Chem Soc 132:17961–17972PubMedCentralPubMedGoogle Scholar
  88. Lodhi MA, Daly MJ, Ye GN et al (1995) A molecular marker based linkage map of Vitis. Genome 38:786–794PubMedGoogle Scholar
  89. Lorenc MT, Hayashi S, Stiller J et al (2012) Discovery of Single Nucleotide Polymorphisms in Complex Genomes Using SGSautoSNP. Biology 1:370–382PubMedCentralPubMedGoogle Scholar
  90. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedCentralPubMedGoogle Scholar
  91. Marshall D, Hayward A, Eales D et al (2010) Targeted identification of genomic regions using db. Plant Methods 6:19PubMedCentralPubMedGoogle Scholar
  92. Ming R, Hou S, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996PubMedCentralPubMedGoogle Scholar
  93. Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal Genome Evolution – Grasses, Line up and Form a Circle. Curr Biol 5:737–739PubMedGoogle Scholar
  94. Mun J-H, Kwon S-J, Seol Y-J et al (2010) Sequence and structure of Brassica rapa chromosome A3. Genome Biol 11:94Google Scholar
  95. Nie X, Li B, Wang L et al (2012) Development of chromosome-arm-specific microsatellite markers in Triticum aestivum (Poaceae) using NGS technology. Am J Bot 99:369–371Google Scholar
  96. Orrù L, Catillo G, Napolitano F et al (2009) Characterization of a SNPs panel for meat traceability in six cattle breeds. Food Control 20:856–860Google Scholar
  97. Pang X, Luo H, Sun C (2012) Assessing the potential of candidate DNA barcodes for identifying non-flowering seed plants. Plant Biol 14:839–844Google Scholar
  98. Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556PubMedGoogle Scholar
  99. Paux E, Roger D, Badaeva E et al (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474PubMedGoogle Scholar
  100. Paux E, Sourdille P, Salse J et al (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104PubMedGoogle Scholar
  101. Rasko DA, Webster DR, Sahl JW et al (2011) Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med 365:709–717PubMedCentralPubMedGoogle Scholar
  102. Redon R, Ishikawa S, Fitch KR et al (2006) Global variation in copy number in the human genome. Nature 444:444–454PubMedCentralPubMedGoogle Scholar
  103. Safar J, Bartos J, Janda J et al (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39:960–968PubMedGoogle Scholar
  104. Šafář J, Šimková H, Kubalákoá M et al (2010) Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res 129:211–223PubMedGoogle Scholar
  105. Saintenac C, Falque M, Martin OC et al (2009) Detailed Recombination Studies Along Chromosome 3B Provide New Insights on Crossover Distribution in Wheat (Triticum aestivum L.). Genetics 181:393–403PubMedCentralPubMedGoogle Scholar
  106. Salvi S, Sponza G, Morgante M et al (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci 104:11376–11381PubMedCentralPubMedGoogle Scholar
  107. SanMiguel P, Gaut BS, Tikhonov A et al (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45PubMedGoogle Scholar
  108. Sato S, Nakamura Y, Kaneko T et al (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239PubMedCentralPubMedGoogle Scholar
  109. Schlueter JA, Scheffler BE, Jackson S, Shoemaker RC (2008) Fractionation of synteny in a genomic region containing tandemly duplicated genes across glycine max, Medicago truncatula, and Arabidopsis thaliana. J Hered 99:390–395PubMedGoogle Scholar
  110. Schmutz J, Cannon SB, Schlueter J et al (2010a) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183Google Scholar
  111. Schmutz J, Cannon SB, Schlueter J et al (2010b) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183Google Scholar
  112. Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115PubMedGoogle Scholar
  113. Seeb JE, Carvalho G, Hauser L et al (2011) Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. Mol Ecol Resour 11(1):1–8PubMedGoogle Scholar
  114. Shibata D (2005) Genome sequencing and functional genomics approaches in tomato. J Gen Plant Pathol 71:1–7Google Scholar
  115. Shulaev V, Korban SS, Sosinski B et al (2008) Multiple models for Rosaceae genomics. Plant Physiol 147:985–1003PubMedCentralPubMedGoogle Scholar
  116. Shulaev V, Sargent DJ, Crowhurst RN et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116PubMedCentralPubMedGoogle Scholar
  117. Springer NM, Ying K, Fu Y et al (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5:e1000734PubMedCentralPubMedGoogle Scholar
  118. Syvanen AC (2001) Accessing genetic variation: Genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942PubMedGoogle Scholar
  119. Tetz VV (2005) The pangenome concept: a unifying view of genetic information. Med Sci Monitor 11:HY24–29Google Scholar
  120. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815Google Scholar
  121. Tuskan GA, DiFazio SP, Teichmann T (2004) Poplar genomics is getting popular: The impact of the poplar genome project on tree research. Plant Biol 6:2–4PubMedGoogle Scholar
  122. Tuskan GA, Difazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedGoogle Scholar
  123. Varshney RK, Chen W, Li Y et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89Google Scholar
  124. Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of kabuli chickpea (Cicer arietinum): genetic structure and breeding constraints for crop improvement. Nat BiotechnolGoogle Scholar
  125. Velasco R, Zharkikh A, Troggio M et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2:e1326PubMedCentralPubMedGoogle Scholar
  126. Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833–839PubMedGoogle Scholar
  127. Vielle-Calzada JP, Martinez delaVO, Hernandez-Guzman G et al (2009) The Palomero genome suggests metal effects on domestication. Science 326:1078PubMedGoogle Scholar
  128. Wang X, Wang H, Wang J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1157PubMedGoogle Scholar
  129. Williams-Carrier R, Stiffler N, Belcher S et al (2010) Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize. Plant J 63:167–177PubMedGoogle Scholar
  130. Wu DD, Zhang YP (2011) Eukaryotic origin of a metabolic pathway in virus by horizontal gene transfer. Genomics 98:367–369PubMedGoogle Scholar
  131. Xie C, Tammi MT (2009) CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics 10:80PubMedCentralPubMedGoogle Scholar
  132. Xu JH, Bennetzen JL, Messing J (2011a) Dynamic Gene Copy Number Variation in Collinear Regions of Grass Genomes. Mol Biol EvolGoogle Scholar
  133. Xu X, Pan S, Cheng S et al (2011b) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195Google Scholar
  134. Xu X, Pan S, Cheng S et al (2011c) Genome sequence and analysis of the tuber crop potato. Nature 475:189–194Google Scholar
  135. Xu X, Liu X, Ge S et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotech 30:105–111Google Scholar
  136. Young ND, Debelle F, Oldroyd GED et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature advance online publicationGoogle Scholar
  137. Yu J, Hu SN, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp indica). Science 296:79–92PubMedGoogle Scholar
  138. Yue WF, Du M, Zhu MJ (2012) High Temperature in Combination with UV Irradiation Enhances Horizontal Transfer of stx2 Gene from E. coli O157:H7 to Non-Pathogenic E. coli. PLoS One 7:e31308PubMedCentralPubMedGoogle Scholar
  139. Zhang Z, Belcram H, Gornicki P et al (2011) Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proc Natl Acad Sci U S A 108:18737–18742PubMedCentralPubMedGoogle Scholar
  140. Zharkikh A, Troggio M, Pruss D et al (2008) Sequencing and assembly of highly heterozygous genome of Vitis vinifera L. cv Pinot Noir: problems and solutions. J Biotechnol 136:38–43PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Paul Visendi
    • 1
    • 2
  • Jacqueline Batley
    • 1
  • David Edwards
    • 1
    • 2
    Email author
  1. 1.University of Queensland, School of Agriculture and Food SciencesBrisbaneAustralia
  2. 2.Australian Centre for Plant Functional GenomicsUniversity of QueenslandBrisbaneAustralia

Personalised recommendations