Enhanced Ion Transport in 2-nm Silica Nanochannels

Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

Fluidic nanochannels with 1–2 nm in size are functional mimics of protein channels, and have recently attracted significant attention for exploring the transport of ions and molecules in confined liquids. Here we report ion transport in 2 nm deep nanochannels fabricated by standard semiconductor manufacturing processes. Ion transport in these nanochannels is dominated by surface charge until the ion concentration exceeds 100 mM. At low concentrations, proton mobility increases by a factor of four over its bulk value, possibly due to overlap of the two hydration layers adjacent to hydrophilic surfaces. The mobility of K+/Na + ions also increases as the bulk concentration decreases, although the reasons are not completely understood.

Keywords

Surface Charge Density Hydration Layer Proton Concentration Proton Mobility Debye Screening Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Note: This work is a revision of a previous paper titled “Anomalous ion transport in 2-nm hydrophilic nanochannels”, which has been published in Nature Nanotechnology 5, 848–852, 2010.

References

  1. 1.
    Eijkel JCT, van den Berg A (2005) Nanofluidics: what is it and what can we expect from it? Microfluid Nanofluid 1:249–267CrossRefGoogle Scholar
  2. 2.
    Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 93:035901CrossRefGoogle Scholar
  3. 3.
    Pu QS, Yun JS, Temkin H, Liu SR (2004) Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett 4:1099–1103CrossRefGoogle Scholar
  4. 4.
    Kim SJ, Wang YC, Lee JH, Jang H, Han J (2007) Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys Rev Lett 99:044501CrossRefGoogle Scholar
  5. 5.
    Karnik R, Fan R, Yue M, Li DY, Yang PD, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5:943–948CrossRefGoogle Scholar
  6. 6.
    Fan R, Yue M, Karnik R, Majumdar A, Yang PD (2005) Polarity switching and transient responses in single nanotube nanofluidic transistors. Phys Rev Lett 95:086607CrossRefGoogle Scholar
  7. 7.
    Fan R, Huh S, Yan R, Arnold J, Yang PD (2008) Gated proton transport in aligned mesoporous silica films. Nat Mater 7:303–307CrossRefGoogle Scholar
  8. 8.
    Karnik R, Castelino K, Majumdar A (2006) Field-effect control of protein transport in a nanofluidic transistor circuit. Appl Phys Lett 88:123114CrossRefGoogle Scholar
  9. 9.
    Karnik R, Duan C, Castelino K, Daiguji H, Majumdar A (2007) Rectification of ionic current in a nanofluidic diode. Nano Lett 7:547–551CrossRefGoogle Scholar
  10. 10.
    Vlassiouk I, Siwy ZS (2007) Nanofluidic diode. Nano Lett 7:552–556CrossRefGoogle Scholar
  11. 11.
    Lu MC, Satyanarayana S, Karnik R, Majumdar A, Wang CC (2006) A mechanical-electrokinetic battery using a nano-porous membrane. J Micromech Microeng 16:667–675CrossRefGoogle Scholar
  12. 12.
    van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C (2006) Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett 6:2232–2237CrossRefGoogle Scholar
  13. 13.
    Liu HT, He J, Tang JY, Liu H, Pang P, Cao D, Krstic P, Joseph S, Lindsay S, Nuckolls C (2010) Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327:64–67CrossRefGoogle Scholar
  14. 14.
    Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763CrossRefGoogle Scholar
  15. 15.
    Holt JK, Park HG, Wang YM, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037CrossRefGoogle Scholar
  16. 16.
    Rhee M, Burns MA (2007) Nanopore sequencing technology: nanopore preparations. Trends Biotechnol 25:174–181CrossRefGoogle Scholar
  17. 17.
    Mao P, Han JY (2005) Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding. Lab Chip 5:837–844CrossRefGoogle Scholar
  18. 18.
    Duan C, Majumdar A (2010) Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat Nanotechnol 5:848–852CrossRefGoogle Scholar
  19. 19.
    Raider SI, Gregor LV, Flitsch R (1973) Transfer of mobile ions from aqueous-solutions to silicon dioxide surface. J Electrochem Soc 120:425–431CrossRefGoogle Scholar
  20. 20.
    Jensen KL, Kristensen JT, Crumrine AM, Andersen MB, Bruus H, Pennathur S (2011) Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels. Phys Rev E 83:056307CrossRefGoogle Scholar
  21. 21.
    Baldessari F (2008) Electrokinetics in nanochannels – Part I. Electric double layer overlap and channel-to-well equilibrium. J Colloid Interface Sci 325:526–538CrossRefGoogle Scholar
  22. 22.
    Israelachvili J (2003) Intermolecular and surface forces, 2nd edn. Academic, LondonGoogle Scholar
  23. 23.
    von Grotthuss CJD (1806) Sur la décomposition de l’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique. Ann Chim 58:54–73Google Scholar
  24. 24.
    Agmon N (1995) The Grotthuss mechanism. Chem Phys Lett 244:456–462CrossRefGoogle Scholar
  25. 25.
    Kunst M, Warman JM (1980) Proton mobility in ice. Nature 288:465–467CrossRefGoogle Scholar
  26. 26.
    Pomes R, Roux B (2002) Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel. Biophys J 82:2304–2316CrossRefGoogle Scholar
  27. 27.
    Dellago C, Naor MM, Hummer G (2003) Proton transport through water-filled carbon nanotubes. Phys Rev Lett 90:105902CrossRefGoogle Scholar
  28. 28.
    Du Q, Freysz E, Shen YR (1994) Vibrational-spectra of water-molecules at quartz water interfaces. Phys Rev Lett 72:238–241CrossRefGoogle Scholar
  29. 29.
    Israelachvili JN, Pashley RM (1983) Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 306:249–250CrossRefGoogle Scholar
  30. 30.
    Koplik J, Banavar JR, Willemsen JF (1989) Molecular-dynamics of fluid-flow at solid-surfaces. Phys Fluids A 1:781–794CrossRefGoogle Scholar
  31. 31.
    Peter C, Hummer G (2005) Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations. Biophys J 89:2222–2234CrossRefGoogle Scholar
  32. 32.
    Leng YS, Cummings PT (2006) Hydration structure of water confined between mica surfaces. J Chem Phys 124:074711CrossRefGoogle Scholar
  33. 33.
    Mattke T, Kecke HJ (1998) Molecular dynamic simulations of single, interacting, and sheared double layers 1. Configuration of a double layer. J Colloid Interface Sci 208:555–561CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringBoston UniversityBostonUSA

Personalised recommendations