Disturbance Regimes and Stressors

  • Matthew P. AyresEmail author
  • Jeffrey A. Hicke
  • Becky K. Kerns
  • Don McKenzie
  • Jeremy S. Littell
  • Lawrence E. Band
  • Charles H. Luce
  • Aaron S. Weed
  • Crystal L. Raymond
Part of the Advances in Global Change Research book series (AGLO, volume 57)


The effects of climate change on insect outbreaks, wildfire, invasive species, and pathogens in forest ecosystems will greatly exceed the effects of warmer temperature on gradual changes in forest processes. Increased frequency and extent of these disturbances will lead to rapid changes in vegetation age and structure, plant species composition, productivity, carbon storage, and water yield. Insect outbreaks are the most pervasive forest disturbance in the United States, and rapid spread of bark beetles in the western United States has been attributed to a recent increase in temperature. Wildfire area burned has increased in recent decades, although frequency and severity have not changed, and is expected to greatly increase by 2050 (at least twice as much area burned annually in the West). More frequent occurrence of fire and insects will create landscapes in which regeneration of vegetation will occur in a warmer environment, possibly with new species assemblages, younger age classes, and altered forest structure. Increased fire and insects may in turn cause more erosion and landslides. Invasive plant species are already a component of all forest ecosystems, and a warmer climate will likely facilitate the spread of current and new invasives, particularly annuals that compete effectively in an environment with higher temperature and frequent disturbance. The interaction of multiple disturbances and stressors, or stress complexes, has the potential to alter the structure and function of forest ecosystems, especially when considered in the context of human land-use change. Occurring across large landscapes over time, these stress complexes will have mostly negative effects on ecosystem services, requiring costly responses to mitigate them and active management of forest ecosystems to enhance resilience.


Forest Ecosystem Invasive Plant Bark Beetle Fire Regime Fire Risk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, H. D., Macalady, A. K., Breshears, D. D., et al. (2010). Climate-induced tree mortality: Earth system consequences. EOS, Transactions of the American Geophysical Union, 91, 153.CrossRefGoogle Scholar
  2. Adams, H. D., Luce, C. H., Breshears, D. D., et al. (2012). Ecohydrological consequences of drought- and infestation-triggered tree die-off: Insights and hypotheses. Ecohydrology, 5, 145–149.Google Scholar
  3. Allen, C. D., & Breshears, D. D. (1998). Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Proceedings of the National Academy of Sciences, USA, 95, 14839–14842.CrossRefGoogle Scholar
  4. Allen, C. D., Savage, M., Falk, D. A., et al. (2002). Ecological restoration of Southwestern ponderosa pine ecosystems: A broad perspective. Ecological Applications, 12, 1418–1433.CrossRefGoogle Scholar
  5. Allen, C. D., Macalady, A. K., Chenchouni, H., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684.CrossRefGoogle Scholar
  6. Alpert, P., Bone, E., & Holzapfel, C. (2000). Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspectives in Plant Ecology, Evolution and Systematics, 3, 52–66.CrossRefGoogle Scholar
  7. Ayres, M. P., & Lombardero, M. J. (2000). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. The Science of the Total Environment, 262, 263–286.CrossRefGoogle Scholar
  8. Bachelet, D., Neilson, R. P., Lenihan, J. M., & Drapek, R. J. (2001). Climate change effects on vegetation distribution and carbon budget in the United States. Ecosystems, 4, 164–185.CrossRefGoogle Scholar
  9. Bailey, J. D., Mayrohn, C., Doescher, P. S., et al. (1998). Understory vegetation in old and young Douglas-fir forests of western Oregon. Forest Ecology and Management, 112, 289–302.CrossRefGoogle Scholar
  10. Band, L. E., Hwang, T., Hales, T. C., et al. (2011). Ecosystem processes at the watershed scale: Mapping and modeling ecohydrological controls of landslides. Geomorphology, 137, 159–167.CrossRefGoogle Scholar
  11. Barnett, T. P., & Pierce, D. W. (2008). When will Lake Mead go dry? Water Resources Research, 44, W03201.CrossRefGoogle Scholar
  12. Bentz, B., Logan, J., MacMahon, J., et al. (2009). Bark beetle outbreaks in western North America: Causes and consequences (44pp). Salt Lake City: University of Utah Press.Google Scholar
  13. Bentz, B. J., Régnière, J., Fettig, C. J., et al. (2010). Climate change and bark beetles of the Western United States and Canada: Direct and indirect effects. BioScience, 60, 602–613.CrossRefGoogle Scholar
  14. Berg, E. E., Henry, J. D., Fastie, C. L., et al. (2006). Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve. Yukon Territory: Relationship to summer temperatures and regional differences in disturbance regimes. Forest Ecology and Management, 227, 219–232.CrossRefGoogle Scholar
  15. Berggren, A., Böjrkman, C., Bylund, H., & Ayres, M. P. (2009). The distribution and abundance of animal populations in a climate of uncertainty. Oikos, 118, 1121–1126.CrossRefGoogle Scholar
  16. Bigler, C., Kulakowski, D., & Veblen, T. T. (2005). Multiple disturbance interactions and drought influence fire severity in Rocky Mountain subalpine forests. Ecology, 86, 3018–3029.CrossRefGoogle Scholar
  17. Bond, W. J., & Midgley, G. F. (2000). A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Global Change Biology, 6, 865–869.CrossRefGoogle Scholar
  18. Boon, S. (2012). Snow accumulation following forest disturbance. Ecohydrology, 5, 279–285.CrossRefGoogle Scholar
  19. Brace, S., & Peterson, D. L. (1998). Spatial patterns of tropospheric ozone in the Mount Rainier region of the Cascade Mountains, U.S.A. Atmospheric Environment, 32, 3629–3637.CrossRefGoogle Scholar
  20. Bradley, B. A., Oppenheimer, M., & Wilcove, D. S. (2009). Climate change and plant invasions: Restoration opportunities ahead? Global Change Biology, 15, 1511–1521.CrossRefGoogle Scholar
  21. Breshears, D. D., Cobb, N. S., Rich, P. M., et al. (2005). Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences, USA, 102, 15144–15148.CrossRefGoogle Scholar
  22. Briffa, K. R. (2000). Annual climate variability in the Holocene: Interpreting the message of ancient trees. Quaternary Science Reviews, 19, 87–105.CrossRefGoogle Scholar
  23. Brooks, P. D., Troch, P. A., Durcik, M., et al. (2011). Quantifying regional scale ecosystem response to changes in precipitation: Not all rain is created equal. Water Resources Research, 47, W00J08.CrossRefGoogle Scholar
  24. Brown, A. E., Zhang, L., McMahon, T. A., et al. (2005). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310, 28–61.CrossRefGoogle Scholar
  25. Burke, E. J., Brown, S. J., & Christidis, N. (2006). Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model©. Journal of Hydrometeorology, 7, 1113–1125.CrossRefGoogle Scholar
  26. Busby, P. E., Motzkin, G., & Foster, D. R. (2008). Multiple and interacting disturbances lead to Fagus grandifolia dominance in coastal New England. Journal of the Torrey Botanical Society, 135, 346–359.CrossRefGoogle Scholar
  27. Campbell, R., Smith, D. J., & Arsenault, A. (2006). Multicentury history of western spruce budworm outbreaks in interior Douglas-fir forests near Kamloops, British Columbia. Canadian Journal of Forest Research, 36, 1758–1769.CrossRefGoogle Scholar
  28. Candau, J.-N., & Fleming, R. A. (2005). Landscape-scale spatial distribution of spruce budworm defoliation in relation to bioclimatic conditions. Canadian Journal of Forest Research, 35, 2218–2232.CrossRefGoogle Scholar
  29. Cannon, S. H., Gartner, J. E., Rupert, M. G., et al. (2010). Predicting the probability and volume of postwildfire debris flows in the intermountain western United States. Geological Society of America Bulletin, 122, 127–144.CrossRefGoogle Scholar
  30. Chambers, J. C., Roundy, B. A., Blank, R. R., et al. (2007). What makes Great Basin sagebrush ecosystems invasible by Bromus tectorum? Ecological Monographs, 77, 117–145.CrossRefGoogle Scholar
  31. Chan-McLeod, A. C. A. (2006). A review and synthesis of the effects of unsalvaged mountain-pine-beetle-attacked stands on wildlife and implications for forest management. BC Journal of Ecosystems and Management, 7, 119–132.Google Scholar
  32. Cohn, J. P. (2005). Tiff over tamarisk: Can a nuisance be nice, too? Bioscience, 55, 648–654.CrossRefGoogle Scholar
  33. Colautti, R. I., Grigorovich, I. A., & MacIsaac, H. J. (2006). Propagule pressure: A null model for biological invasions. Biological Invasions, 8, 1023–1037.CrossRefGoogle Scholar
  34. Collins, D. B. G., & Bras, R. L. (2008). Climate control of sediment yield in dry lands following climate and land cover change. Water Resources Research, 44, W10405.CrossRefGoogle Scholar
  35. Collins, B. M., Omi, P. N., & Chapman, P. L. (2006). Regional relationships between climate and wildfire-burned area in the Interior West, USA. Canadian Journal of Forest Research, 36, 699–709.CrossRefGoogle Scholar
  36. Collins, B. J., Rhoades, C. C., Hubbard, R. M., & Battaglia, M. A. (2011). Tree regeneration and future stand development after bark beetle infestation and harvesting in Colorado lodgepole pine stands. Forest Ecology and Management, 261, 2168–2175.CrossRefGoogle Scholar
  37. Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., et al. (2011). Changes in climate water balance drive downhill shifts in plant species optimum elevations. Science, 331, 324–327.CrossRefGoogle Scholar
  38. Cudmore, T. J., Bjorkland, N., Carroll, A. L., & Lindgren, B. S. (2010). Climate change and range expansion of an aggressive bark beetle: Evidence of higher beetle reproduction in naïve host tree populations. Journal of Applied Ecology, 47, 1036–1043.CrossRefGoogle Scholar
  39. D’Antonio, C. M. (2000). Chapter 4: Fire, plant invasions, and global changes. In H. A. Mooney & R. J. Hobbs (Eds.), Invasive species in a changing world (pp. 65–94). Washington, DC: Island Press.Google Scholar
  40. D’Antonio, C., Levine, J., & Thomsen, M. (2001). Ecosystem resistance to invasion and the role of propagule supply: A California perspective. Journal of Mediterranean Ecology, 2, 233–245.Google Scholar
  41. Dale, V. H., Joyce, L. A., McNulty, S., et al. (2001). Climate change and forest disturbances. BioScience, 51, 723–734.CrossRefGoogle Scholar
  42. Davis, M. A., Grime, J. P., & Thompson, K. (2000). Fluctuating resources in plant communities: A general theory of invasibility. Journal of Ecology, 88, 528–534.CrossRefGoogle Scholar
  43. Dettinger, M. (2011). Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. Journal of the American Water Resources Association, 47, 514–523.CrossRefGoogle Scholar
  44. Drever, M. C., Goheen, J. R., & Martin, K. (2009). Species-energy theory, pulsed resources, and regulation of avian richness during a mountain pine beetle outbreak. Ecology, 90, 1095–1105.CrossRefGoogle Scholar
  45. Duffy, P. A., Walsh, J. E., Graham, J. M., et al. (2005). Impacts of large-scale atmospheric-ocean variability on Alaskan fire season severity. Ecological Applications, 15, 1317–1330.CrossRefGoogle Scholar
  46. Dukes, J. S., & Mooney, H. A. (1999). Does global change increase the success of biological invaders? Trends in Ecology & Evolution, 14, 135–139.CrossRefGoogle Scholar
  47. Dukes, J. S., Pontius, J., Orwig, D., et al. (2009). Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: What can we predict? Canadian Journal of Forest Research, 39, 231–248.CrossRefGoogle Scholar
  48. Dukes, J. S., Chiariello, N. R., Loarie, S. R., & Field, C. B. (2011). Strong response of an invasive plant species (Centaurea solstitialis L.) to global environmental changes. Ecological Applications, 21, 1887–1894.CrossRefGoogle Scholar
  49. Duncan, C. A., Jachetta, J. J., Brown, M. L., et al. (2004). Assessing the economic, environmental, and societal losses from invasive plants on rangeland and wildlands. Weed Technology, 18, 1411–1416.CrossRefGoogle Scholar
  50. Dwyer, G., Dushoff, J., & Yee, S. H. (2004). The combined effects of pathogens and predators on insect outbreaks. Nature, 430, 341–345.CrossRefGoogle Scholar
  51. Eamus, D. (1991). The interaction of rising CO2 and temperatures with water use efficiency. Plant, Cell & Environment, 14, 843–852.CrossRefGoogle Scholar
  52. Easterling, D. R., Evans, J. L., Groisman, P. Y., et al. (2000). Observed variability and trends in extreme climate events: A brief review. Bulletin of the American Meteorological Society, 81, 417–425.CrossRefGoogle Scholar
  53. Eschtruth, A. K., & Battles, J. J. (2009). Assessing the relative importance of disturbance, herbivory, diversity, and propagule pressure in exotic plant invasion. Ecological Monographs, 79, 265–280.CrossRefGoogle Scholar
  54. Esque, T. C., Schwalbe, C. R., Lissow, J. A., et al. (2007). Buffelgrass fuel loads in Saguaro National Park, Arizona, increase fire danger and threaten native species. Park Science, 24, 33–37.Google Scholar
  55. Evangelista, P. H., Kumer, S., Stohlgren, T. J., & Young, N. E. (2011). Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. Forest Ecology and Management, 262, 307–316.CrossRefGoogle Scholar
  56. Evans, L. M., Hofstetter, R. W., Ayres, M. P., & Klepzig, K. D. (2011). Temperature alters the relative abundance and population growth rates of species within the Dendroctonus frontalis (Coleoptera: Curculionidae) community. Environmental Entomology, 40, 824–834.CrossRefGoogle Scholar
  57. Fauria, M. M., & Johnson, E. A. (2006). Large-scale climatic patterns control large lightning fire occurrence in Canada and Alaska forest regions. Journal of Geophysical Research, 111, G04008.Google Scholar
  58. Ferrell, G. T. (1996). Chapter 45: The influence of insect pests and pathogens on Sierra forests. In Sierra Nevada Ecosystem Project: Final report to Congress, Vol. II, Assessments and scientific basis for management options (pp. 1177–1192). Davis: University of California, Centers for Water and Wildland Resources.Google Scholar
  59. Fischer, R. A., Reese, K. P., & Connelly, J. W. (1996). An investigation on fire effects within xeric sage grouse brood habitat. Journal of Range Management, 49, 194–198.CrossRefGoogle Scholar
  60. Ford, C. R., Laseter, S. H., Swank, W. T., & Vose, J. M. (2011). Can forest management be used to sustain water-based ecosystem services in the face of climate change? Ecological Applications, 21, 2049–2067.CrossRefGoogle Scholar
  61. Foster, D. R., Clayden, S., Orwig, D. A., et al. (2002). Oak, chestnut and fire: Climatic and cultural controls of long-term forest dynamics in New England, USA. Journal of Biogeography, 29, 1359–1379.CrossRefGoogle Scholar
  62. Friedenberg, N. A., Powell, J. A., & Ayres, M. P. (2007). Synchrony’s double edge: Transient dynamics and the Allee effect in stage structured populations. Ecology Letters, 10, 564–573.CrossRefGoogle Scholar
  63. Furniss, M. M., Holsten, E. H., Foote, M. J., & Bertram, M. (2001). Biology of a willow leafblotch miner, Micrurapteryx salicifoliella, (Lepidoptera: Gracillariidae) in Alaska. Environmental Entomology, 30, 736–741.CrossRefGoogle Scholar
  64. Ganey, J. L., & Vojta, S. C. (2011). Tree mortality in drought-stressed mixed-conifer and ponderosa pine forests, Arizona, USA. Forest Ecology and Management, 261, 162–168.CrossRefGoogle Scholar
  65. Garnas, J. R., Ayres, M. P., Liebhold, A. M., & Evans, C. (2011a). Subcontinental impacts of an invasive tree disease on forest structure and dynamics. Journal of Ecology, 99, 532–541.Google Scholar
  66. Garnas, J. R., Houston, D. R., Ayres, M. P., & Evans, C. (2011b). Disease ontogeny overshadows effects of climate and species interactions on population dynamics in a nonnative forest disease complex. Ecography, 35, 412–421.CrossRefGoogle Scholar
  67. Gaylord, M. L., Kolb, T. E., Wallin, K. F., & Wagner, M. R. (2007). Seasonal dynamics of tree growth, physiology, and resin defenses in a northern Arizona ponderosa pine forest. Canadian Journal of Forest Research, 37, 1173–1183.CrossRefGoogle Scholar
  68. Gillooly, J. F., Charnov, E. L., West, G. B., et al. (2002). Effects of size and temperature on developmental time. Nature, 417, 70–73.CrossRefGoogle Scholar
  69. Goode, J. R., Luce, C. H., & Buffington, J. M. (2011). Enhanced sediment delivery in a changing climate in semi-arid mountain basins: Implications for water resource management and aquatic habitat in the northern Rocky Mountains. Geomorphology, 139/140, 1–15.CrossRefGoogle Scholar
  70. Greenwood, D. L., & Weisberg, P. J. (2008). Density-dependent tree mortality in pinyon-juniper woodlands. Forest Ecology and Management, 255, 2129–2137.CrossRefGoogle Scholar
  71. Grissino-Mayer, H. D., & Swetnam, T. W. (2000). Century-scale climate forcing of fire regimes in the American Southwest. The Holocene, 10, 213–220.CrossRefGoogle Scholar
  72. Groffman, P. M., Baron, J. S., Blett, T., et al. (2006). Ecological thresholds: The key to successful environmental management or an important concept with no practical application? Ecosystems, 9, 1–13.CrossRefGoogle Scholar
  73. Grulke, N. E. (2011). The nexus of host and pathogen phenology: Understanding the disease triangle with climate change. New Phytologist, 189, 8–11.CrossRefGoogle Scholar
  74. Hales, T. C., Ford, C. R., Hwang, T., et al. (2009). Topographic and ecologic controls on root reinforcement. Journal of Geophysical Research, 114, F03013.Google Scholar
  75. Halpern, C. B. (1989). Early successional patterns of forest species: Interactions of life history traits and disturbance. Ecology, 70, 704–720.CrossRefGoogle Scholar
  76. Hamlet, A. F., & Lettenmaier, D. P. (2007). Effects of 20th century warming and climate variability on flood risk in the western U.S. Water Resources Research, 43, W06427.CrossRefGoogle Scholar
  77. Hellmann, J. J., Byers, J. E., Bierwagen, B. G., & Dukes, J. S. (2008). Five potential consequences of climate change for invasive species. Special section. Conservation Biology, 22, 534–543.CrossRefGoogle Scholar
  78. Hessl, A. E., McKenzie, D., & Schellhaas, R. (2004). Drought and Pacific Decadal Oscillation linked to fire occurrence in the inland Pacific Northwest. Ecological Applications, 14, 425–442.CrossRefGoogle Scholar
  79. Heyerdahl, E. K., Brubaker, L. B., & Agee, J. K. (2002). Annual and decadal climate forcing of historical regimes in the interior Pacific Northwest, USA. The Holocene, 12, 597–604.CrossRefGoogle Scholar
  80. Heyerdahl, E. K., McKenzie, D., Daniels, L. D., et al. (2008a). Climate drivers of regionally synchronous fires in the inland Northwest (1651–1900). International Journal of Wildland Fire, 17, 40–49.CrossRefGoogle Scholar
  81. Heyerdahl, E. K., Morgan, P., & Riser, J. P. (2008b). Multi-season climate synchronized historical fires in dry forests (1650–1900), Northern Rockies, U.S.A. Ecology, 89, 705–716.CrossRefGoogle Scholar
  82. Hicke, J. A., Logan, J. A., Powell, J., & Ojima, D. S. (2006). Changes in temperature influence suitability for modeled mountain pine beetle (Dendroctonus ponderosae) outbreaks in the Western United States. Journal of Geophysical Research, 11, G02019.Google Scholar
  83. Hicke, J. A., Allen, C. D., Desai, A. R., et al. (2012a). Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Global Change Biology, 18, 7–34.CrossRefGoogle Scholar
  84. Hicke, J. A., Johnson, M. C., Hayes, J. L., & Preisler, H. K. (2012b). Effects of bark beetle-caused tree mortality on wildfire. Forest Ecology and Management, 271, 81–90.CrossRefGoogle Scholar
  85. Hofstetter, R. W., Dempsey, T. D., Klepzig, K. D., & Ayres, M. P. (2007). Temperature-dependent effects on mutualistic, antagonistic, and commensalistic interactions among insects, fungi and mites. Community Ecology, 8, 47–56.CrossRefGoogle Scholar
  86. Holden, Z. A., Abatzoglou, J. T., Luce, C. H., & Baggett, L. S. (2011a). Empirical downscaling of daily minimum air temperature at very fine resolutions in complex terrain. Agricultural and Forest Meteorology, 151, 1066–1073.CrossRefGoogle Scholar
  87. Holden, Z. A., Luce, C. H., Crimmins, M. A., & Morgan, P. (2011b). Wildfire extent and severity correlated with annual streamflow distribution and timing in the Pacific Northwest, USA (1984–2005). Ecohydrology. doi: 10.1002/eco.257.Google Scholar
  88. Holmes, T. P., Liebhold, A. M., Kovacs, K. F., & Von Holle, B. (2010). A spatial-dynamic value transfer model of economic losses from a biological invasion. Ecological Economics, 70, 86–95.CrossRefGoogle Scholar
  89. Hutchinson, T. F., Long, R. P., Ford, R. D., & Sutherland, E. K. (2008). Fire history and the establishment of oaks and maples in second-growth forests. Canadian Journal of Forest Research, 38, 1184–1198.CrossRefGoogle Scholar
  90. Hwang, T., Band, L., & Hales, T. C. (2009). Ecosystem processes at the watershed scale: Extending optimality theory from plot to catchment. Water Resources Research, 45, W11425.CrossRefGoogle Scholar
  91. Istanbulluoglu, E., & Bras, R. L. (2006). On the dynamics of soil moisture, vegetation, and erosion: Implications of climate variability and change. Water Resources Research, 42, W06418.CrossRefGoogle Scholar
  92. Jenkins, M. J., Hebertson, E., Page, W., & Jorgensen, C. A. (2008). Bark beetles, fuels, fires and implications for forest management in the Intermountain West. Forest Ecology and Management, 254, 16–34.CrossRefGoogle Scholar
  93. Jepsen, J. U., Kapari, L., & Hagen, S. B. (2011). Rapid northwards expansion of a forest insect pest attributed to spring phenology matching with sub-Arctic birch. Global Change Biology, 17, 2071–2083.CrossRefGoogle Scholar
  94. Jorgenson, M. T., Racine, C. H., Walters, J. C., & Osterkamp, T. E. (2001). Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Climatic Change, 48, 551–571.CrossRefGoogle Scholar
  95. Karl, T. R., & Knight, R. W. (1998). Secular trends of precipitation amount, frequency, and intensity in the United States. Bulletin of the American Meteorological Society, 79, 231–241.CrossRefGoogle Scholar
  96. Keeley, J. E., & McGinnis, T. W. (2007). Impact of prescribed fire and other factors on cheatgrass persistence in a Sierra Nevada ponderosa pine forest. International Journal of Wildland Fire, 16, 96–106.CrossRefGoogle Scholar
  97. Keeley, J. E., Lubin, D., & Fotheringham, C. J. (2003). Fire and grazing impacts on plant diversity and alien plant invasions in the southern Sierra Nevada. Ecological Applications, 13, 1355–1374.CrossRefGoogle Scholar
  98. Kemp, W. P., Everson, D. O., & Wellington, W. G. (1985). Regional climatic patterns and western spruce budworm outbreaks (Tech. Bull. 1693, 31pp). Washington, DC: U.S. Department of Agriculture, Forest Service, Canada/United States Spruce Budworms Program.Google Scholar
  99. Kerns, B. K., Thies, W. G., & Niwa, C. G. (2006). Season and severity of prescribed burn in ponderosa pine forests: Implications for understory native and exotic plants. Ecoscience, 13, 44–55.CrossRefGoogle Scholar
  100. Kerns, B. K., Naylor, B. J., Buonopane, M., et al. (2009). Modeling tamarisk (Tamarix spp.) habitat and climate change effects in the Northwestern United States. Invasive Plant Science and Management, 2, 200–215.CrossRefGoogle Scholar
  101. Kitzberger, T., Brown, P. M., Heyerdahl, E. K., et al. (2007). Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America. Proceedings of the National Academy of Sciences, USA, 104, 543–548.CrossRefGoogle Scholar
  102. Klapwijk, M. J., Ayres, M. P., Battisti, A., & Larsson, S. (2012). Assessing the impact of climate change on outbreak potential. In P. Barbosa, D. L. Letourneau, & A. A. Agrawal (Eds.), Insect outbreaks revisited (pp. 429–450). New York: Wiley-Blackwell.CrossRefGoogle Scholar
  103. Klein, E., Berg, E. E., & Dial, R. (2005). Wetland drying and succession across the Kenai Peninsula Lowlands, south-central Alaska. Canadian Journal of Forest Research, 35, 1931–1941.CrossRefGoogle Scholar
  104. Klopfenstein, N. B., Kim, M.-S., Hanna, J. W., et al. (2009). Approaches to predicting potential impacts of climate change on forest disease: An example with Amillaria root disease (Res. Pap. RMRS-RP-76, 10pp). Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.Google Scholar
  105. Kovacs, K. F., Haight, R. G., McCollough, D. G., et al. (2010). Cost of potential emerald ash borer damage in U.S. communities, 2009–2019. Ecological Economics, 69, 569–578.CrossRefGoogle Scholar
  106. Kovacs, K. F., Mercader, R. J., Haight, R. G., et al. (2011). The influence of satellite populations of emerald ash borer on projected economic costs in U.S. communities, 2010–2020. Journal of Environmental Management, 92, 2170–2181.CrossRefGoogle Scholar
  107. Levine, J. M. (2000). Species diversity and biological invasions: Relating local process to community pattern. Science, 288, 852–854.CrossRefGoogle Scholar
  108. Levine, J. M., Adler, P. B., & Yelenik, S. G. (2004). A meta-analysis of biotic resistance to exotic plant invasions. Review. Ecology Letters, 7, 975–989.CrossRefGoogle Scholar
  109. Lindroth, R. L. (2010). Impacts of elevated atmospheric CO2 and O3 on forests: Phytochemistry, trophic interactions, and ecosystem dynamics. Journal of Chemical Ecology, 36, 2–21.CrossRefGoogle Scholar
  110. Littell, J. S., McKenzie, D., Peterson, D. L., & Westerling, A. L. (2009). Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecological Applications, 19, 1003–1021.CrossRefGoogle Scholar
  111. Littell, J. S., Oneil, E. E., McKenzie, D., et al. (2010). Forest ecosystems, disturbance, and climatic change in Washington State, USA. Climatic Change, 102, 129–158.CrossRefGoogle Scholar
  112. Liu, Y., Stanturf, J., & Goodrick, S. (2010). Trends in global wildfire potential in a changing climate. Forest Ecology and Management, 259, 685–697.CrossRefGoogle Scholar
  113. Lodge, D. M., Williams, L., MacIsaac, H. J., et al. (2006). Biological invasions: Recommendations for U.S. policy and management. Ecological Applications, 16, 2035–2054.CrossRefGoogle Scholar
  114. Logan, J. A., & Powell, J. A. (2001). Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). American Entomologist, 47, 160–173.Google Scholar
  115. Lombardero, M. J., & Ayres, M. P. (2011). Factors influencing bark beetle outbreaks after forest fires on the Iberian Peninsula. Environmental Entomology, 40, 1007–1018.CrossRefGoogle Scholar
  116. Lombardero, M. J., Ayres, M. P., Ayres, B. D., & Reeve, J. D. (2000). Cold tolerance of four species of bark beetle (Coleoptera: Scolytidae) in North America. Environmental Entomology, 29, 421–432.CrossRefGoogle Scholar
  117. Lonsdale, W. M. (1999). Global patterns of plant invasions and the concept of invasibility. Ecology, 80, 1522–1536.CrossRefGoogle Scholar
  118. Lovett, G. M., Canham, C. D., Arthur, M. A., et al. (2006). Forest ecosystem responses to exotic pests and pathogens in eastern North America. BioScience, 56, 395–405.CrossRefGoogle Scholar
  119. Luce, C. H. (2005). Land use and land cover effects on runoff processes: Fire. In M. G. Anderson (Ed.), Encyclopedia of hydrological sciences (pp. 1831–1838). Hoboken: Wiley.Google Scholar
  120. Luce, C. H., & Holden, Z. A. (2009). Declining annual streamflow distributions in the Pacific Northwest United States, 1948–2006. Geophysical Research Letters, 36, L16401.CrossRefGoogle Scholar
  121. Marlon, J., Bartlein, P. J., & Whitlock, C. (2006). Fire-fuel-climate linkages in the northwestern USA during the Holocene. The Holocene, 16, 1059–1071.CrossRefGoogle Scholar
  122. Marlon, J. R., Bartlein, P. J., Carcaillet, C., et al. (2008). Climate and human influences on global biomass burning over the past two millennia. Nature Geoscience, 1, 697–702.CrossRefGoogle Scholar
  123. McKenzie, D., Gedalof, Z., Peterson, D. L., & Mote, P. (2004). Climatic change, wildfire and conservation. Conservation Biology, 18, 890–902.CrossRefGoogle Scholar
  124. McKenzie, D., Peterson, D. L., & Littell, J. J. (2009). Global warming and stress complexes in forests of western North America. In A. Bytnerowicz, M. J. Arbaugh, A. R. Riebau, & C. Andersen (Eds.), Wildland fires and air pollution (pp. 319–337). Amsterdam/London: Elsevier. Developments in Environmental Science 8. Chapter 15.Google Scholar
  125. McNulty, S. G., Lorio, P. L., Ayres, M. P., & Reeve, J. D. (1997). Predictions of southern pine beetle populations under historic and projected climate using a forest ecosystem model. In R. A. Mickler & S. Fox (Eds.), The productivity and sustainability of southern forest ecosystems in a changing environment (pp. 617–634). New York: Springer.Google Scholar
  126. Melillo, J. M., Janetos, A. C., & Karl, T. R. (2001). Climate change impacts on the United States: The potential consequences of climate variability and change. Cambridge: Cambridge University Press.Google Scholar
  127. Meyer, G. A., & Pierce, J. L. (2003). Climatic controls on fire-induced sediment pulses in Yellowstone National Park and central Idaho: a long-term perspective. Forest Ecology and Management, 178, 89–104.CrossRefGoogle Scholar
  128. Miller, J. H. (1990). Ailanthus altissima (Mill.) Swingle ailanthus. In R. M. Burns, & B. H. Honkala (Tech. Coords.), Silvics of North America: Vol. 2. Hardwoods. Agriculture handbook 654 (pp. 101–104). Washington, DC: U.S. Department of Agriculture, Forest Service.Google Scholar
  129. Miller, R. F., & Wigand, P. E. (1994). Holocene changes in semiarid pinyon-juniper woodlands. Bioscience, 44, 465–474.CrossRefGoogle Scholar
  130. Miller, R. F., Bates, J. D., Svejcar, T. J., et al. (2005). Biology, ecology, and management of western juniper (Juniperus occidentalis) (Tech. Bull. 152, 82pp). Corvallis: Oregon State University, Agricultural Experiment Station.Google Scholar
  131. Mitchell, R. J., Hiers, J. K., O’Brien, J. J., et al. (2006). Silviculture that sustains: The nexus between silviculture, frequent prescribed fire, and conservation of biodiversity in longleaf pine forests of the southeastern United States. Canadian Journal of Forest Research, 36, 2724–2736.CrossRefGoogle Scholar
  132. Moody, J. A., & Martin, D. A. (2009). Synthesis of sediment yields after wildland fire in different rainfall regimes in the Western United States. International Journal of Wildland Fire, 18, 96–115.CrossRefGoogle Scholar
  133. Morgan, P., Heyerdahl, E. K., & Gibson, C. E. (2008). Multi-season climate synchronized widespread forest fires throughout the 20th century, Northern Rockies, USA. Ecology, 89, 717–728.CrossRefGoogle Scholar
  134. Moser, J. C., Fitzgibbon, B. A., & Klepzig, K. D. (2005). The Mexican pine beetle, Dendroctonus mexicanus: First record in the United States and co-occurrence with the southern pine beetle— Dendroctonus frontalis (Coleoptera: Scolytidae or Curculionidae: Scolytidae). Entomological News, 116, 235–243.Google Scholar
  135. Myers, J. H., Simberloff, D., Kuris, A. M., & Carey, J. R. (2000). Eradication revisited: Dealing with exotic species. Trends in Ecology & Evolution, 15, 316–320.CrossRefGoogle Scholar
  136. National Interagency Coordination Center. (2011). GACC predictive services intelligence. Accessed 25 Jan 2012.
  137. National Invasive Species Council. (2001). Meeting the invasive species challenge: National invasive species management plan (p. 80). Washington, DC: U.S. Department of Agriculture.Google Scholar
  138. Nelson, C. R., Halpern, C. B., & Agee, J. K. (2008). Thinning and burning results in low-level invasion by nonnative plants but neutral effects on natives. Ecological Applications, 18, 762–770.CrossRefGoogle Scholar
  139. Nowacki, G. J., & Abrams, M. D. (2008). The demise of fire and “mesophication” of forests in the eastern United States. Bioscience, 58, 112–128.CrossRefGoogle Scholar
  140. O’Gorman, P. A., & Schneider, T. (2009). The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proceedings of the National Academy of Sciences, USA, 106, 14773–14777.CrossRefGoogle Scholar
  141. Orwig, D. A., Foster, D. R., & Mausel, D. L. (2002). Landscape patterns of hemlock decline in New England due to the introduced hemlock woolly adelgid. Journal of Biogeography, 29, 1475–1487.CrossRefGoogle Scholar
  142. Pagano, T., & Garen, D. (2005). A recent increase in Western U.S. streamflow variability and persistence. Journal of Hydrometeorology, 6, 173–179.CrossRefGoogle Scholar
  143. Paradis, A., Elkinton, J., Hayhoe, K., & Buonaccorsi, J. (2008). Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America. Mitigation and Adaptation Strategies for Global Change, 13, 541–554.CrossRefGoogle Scholar
  144. Parker, T. J., Clancy, K. M., & Mathiasen, R. L. (2006). Interactions among fire, insects and pathogens in coniferous forests of the interior western United States and Canada. Agricultural and Forest Entomology, 8, 167–189.CrossRefGoogle Scholar
  145. Parks, C. G., Radosevich, S. R., Endress, B. A., et al. (2005). Natural and land-use history of the Northwest mountain ecoregions (USA) in relation to patterns of plant invasions. Perspectives in Plant Ecology, Evolution and Systematics, 7, 137–158.CrossRefGoogle Scholar
  146. Pattison, R. R., & Mack, R. N. (2008). Potential distribution of the invasive tree Triadica sebifera (Euphorbiaceae) in the United States: Evaluating CLIMEX predictions with field trials. Global Change Biology, 14, 813–826.CrossRefGoogle Scholar
  147. Pauchard, A., Kueffer, C., Dietz, H., et al. (2009). Ain’t no mountain high enough: Plant invasions reaching new elevations. Frontiers in Ecology and the Environment, 7, 479–486.CrossRefGoogle Scholar
  148. Peterson, D. L., Arbaugh, M. J., & Robinson, L. J. (1991). Growth trends of ozone-stressed ponderosa pine (Pinus ponderosa) in the Sierra Nevada of California, USA. The Holocene, 1, 50–61.CrossRefGoogle Scholar
  149. Peterson, D. L., Allen, C. D., Baron, J. S., et al. (2012). Response of Western mountain ecosystems to climatic variability and change: A collaborative research approach. In J. Bellant & E. Beever (Eds.), Ecological consequences of climate change: Mechanisms, conservation, and management (pp. 163–190). New York: Taylor & Francis.Google Scholar
  150. Pfeifer, E. M., Hicke, J. A., & Meddens, A. J. H. (2011). Observations and modeling of aboveground tree carbon stocks and fluxes following a bark beetle outbreak in the Western United States. Global Change Biology, 17, 339–350.CrossRefGoogle Scholar
  151. Pierce, J. L., Meyer, G. A., & Jull, A. J. T. (2004). Fire-induced erosion and millennial-scale climate change in northern ponderosa pine forests. Nature, 432, 87–90.CrossRefGoogle Scholar
  152. Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52, 273–288.CrossRefGoogle Scholar
  153. Platt, W. J., Beckage, B., Doren, R. F., & Slater, H. H. (2002). Interactions of large-scale disturbances: Prior fire regimes and hurricane mortality of savanna pines. Ecology, 83, 1566–1572.CrossRefGoogle Scholar
  154. Powell, J. A., Jenkins, J. L., Logan, J. A., & Bentz, B. J. (2000). Seasonal temperature alone can synchronize life cycles. Bulletin of Mathematical Biology, 62, 977–998.CrossRefGoogle Scholar
  155. Powell, K. I., Chase, J. M., & Knight, T. M. (2011). Synthesis of plant invasion effects on biodiversity across spatial scales. American Journal of Botany, 98, 539–548.CrossRefGoogle Scholar
  156. Power, M. J., Marlon, J., Ortiz, N., et al. (2008). Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics, 30, 887–907.CrossRefGoogle Scholar
  157. Price, J. I., McCollum, D. W., & Berrens, R. P. (2010). Insect infestation and residential property values: A hedonic analysis of the mountain pine beetle epidemic. Forest Policy and Economics, 12, 415–422.CrossRefGoogle Scholar
  158. Raffa, K. F., Aukema, B. H., Bentz, B. J., et al. (2008). Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. BioScience, 58, 501–517.CrossRefGoogle Scholar
  159. Rajagopalan, B., Nowak, K., Prairie, J., et al. (2009). Water supply risk on the Colorado River: Can management mitigate? Water Resources Research, 45, W08201.CrossRefGoogle Scholar
  160. Ralph, F. M., Neiman, P. J., Wick, G. A., et al. (2006). Flooding on California’s Russian River: Role of atmospheric rivers. Geophysical Research Letters, 33, L13801.CrossRefGoogle Scholar
  161. Reynolds, L. V., Ayres, M. P., Siccama, T. G., & Holmes, R. T. (2007). Climatic effects on caterpillar fluctuations in northern hardwood forests. Canadian Journal of Forest Research, 37, 481–491.CrossRefGoogle Scholar
  162. Rodenhouse, N. L., Christenson, L. M., Parry, D., & Green, L. E. (2009). Climate change effects on native fauna of northeastern forests. Canadian Journal of Forest Research, 39, 249–263.CrossRefGoogle Scholar
  163. Rohrs-Richey, J. K., Mulder, C. P. H., Winton, L. M., & Stanosz, G. (2011). Physiological performance of an Alaskan shrub (Alnus fruticosa) in response to disease (Valsa melanodiscus) and water stress. New Phytologist, 189, 295–307.CrossRefGoogle Scholar
  164. Ross, M. S., Obrien, J. J., Ford, R. G., et al. (2009). Disturbance and the rising tide: The challenge of biodiversity management on low-island ecosystems. Frontiers in Ecology and the Environment, 7, 471–478.CrossRefGoogle Scholar
  165. Safranyik, L., Carroll, A. L., Régnière, D. W., et al. (2010). Potential for range expansion of mountain pine beetle into the boreal forest of North America. Canadian Entomologist, 142, 415–442.CrossRefGoogle Scholar
  166. Sage, R. F., Coiner, H. A., Way, D. A., et al. (2009). Kudzu [Pueraria montana (Lour.) Merr. var lobata]: A new source of carbohydrate for bioethanol production. Biomass and Bioenergy, 33, 57–61.CrossRefGoogle Scholar
  167. Salinas-Moreno, Y., Ager, A., Vargas, C. F., et al. (2010). Determining the vulnerability of Mexican pine forests to bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae). Forest Ecology and Management, 260, 52–61.CrossRefGoogle Scholar
  168. Sasek, T. W., & Strain, B. R. (1990). Implications of atmospheric CO2 enrichment and climatic change for the geographical distribution of two introduced vines in the U.S.A. Climatic Change, 16, 31–51.CrossRefGoogle Scholar
  169. Scheffer, M., Bascompte, J., Brock, W. A., et al. (2009). Early-warning signals for critical transitions. Nature, 461, 53–59.CrossRefGoogle Scholar
  170. Seabloom, E. W., Harpole, W. S., Reichman, O. J., & Tilman, D. (2003). Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proceedings of the National Academy of Sciences, USA, 100, 13384–13389.CrossRefGoogle Scholar
  171. Seppälä, R., Buck, A., Katila, P. (Eds.). (2009). Adaptation of forests and people to climate change: A global assessment report (224pp). Helsinki: International Union of Forest Research Organizations.Google Scholar
  172. Sexton, J. P., McKay, J. K., & Sala, A. (2002). Plasticity and genetic diversity may allow saltcedar to invade cold climates in North America. Ecological Applications, 12, 1652–1660.CrossRefGoogle Scholar
  173. Shakesby, R. A., & Doerr, S. H. (2006). Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews, 74, 269–307.CrossRefGoogle Scholar
  174. Sheppard, S., & Picard, P. (2006). Visual-quality impacts of forest pest activity at the landscape level: A synthesis of published knowledge and research needs. Landscape and Urban Planning, 77, 321–342.CrossRefGoogle Scholar
  175. Sherriff, R. L., Berg, E. E., & Miller, A. E. (2011). Climate variability and spruce beetle (Dendroctonus rufipennis) outbreaks in south-central and southwest Alaska. Ecology, 92, 1459–1470.CrossRefGoogle Scholar
  176. Siegert, N. W., McCullough, D. G., Venette, R. C., et al. (2009). Assessing the climatic potential for epizootics of the gypsy moth fungal pathogen Entomophaga maimaiga in the north central United States. Canadian Journal of Forest Research, 39, 1958–1970.CrossRefGoogle Scholar
  177. Silander, J. A., Jr., & Klepeis, D. M. (1999). The invasion ecology of Japanese barberry (Berberis thunbergii) in the New England landscape. Biological Invasions, 1, 189–201.CrossRefGoogle Scholar
  178. Silveri, A., Dunwiddie, P. W., & Michaels, H. J. (2001). Logging and edaphic factors in the invasion of an Asian woody vine in a mesic North American forest. Biological Invasions, 3, 379–389.CrossRefGoogle Scholar
  179. Simard, M., Romme, W. H., Griffin, J. M., & Turner, M. G. (2011). Do mountain pine beetle outbreaks change the probability of active crown fire in lodgepole pine forests? Ecological Monographs, 81, 3–24.CrossRefGoogle Scholar
  180. Simberloff, D. (2009). The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution, and Systematics, 40, 81–102.CrossRefGoogle Scholar
  181. Six, D. L., & Bentz, B. J. (2007). Temperature determines symbiont abundance in a multipartite bark beetle-fungus ectosymbiosis. Microbial Ecology, 54, 112–118.CrossRefGoogle Scholar
  182. Solomon, S., Plattner, G.-K., Knutti, R., & Friedlingstein, P. (2009). Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences, USA, 106, 1704–1709.CrossRefGoogle Scholar
  183. Spracklen, D. V., Mickley, L. J., Logan, J. A., et al. (2009). Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the Western United States. Journal of Geophysical Research, 114, D20301.CrossRefGoogle Scholar
  184. Standards and Trade Development Facility. (2009). Climate change and agriculture trade: Risks and responses. Accessed 24 Jan 2012.
  185. Stein, B. A., & Flack, S. R. (Eds.). (1996). America’s least wanted: Alien species invasions of U.S. ecosystems (31pp). Arlington: The Nature Conservancy.Google Scholar
  186. Stone, J. K., Coop, L. B., & Manter, D. K. (2008). Predicting effects of climate change on Swiss needle cast disease severity in Pacific Northwest forests. Canadian Journal of Plant Pathology, 30, 169–176.CrossRefGoogle Scholar
  187. Sturrock, R. N., Frankel, S. J., Brown, A. V., et al. (2011). Climate change and forest diseases. Plant Pathology, 60, 133–149.CrossRefGoogle Scholar
  188. Swetnam, T. W., & Betancourt, J. L. (1998). Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. Journal of Climate, 11, 3128–3147.CrossRefGoogle Scholar
  189. Tchakerian, M. D., & Couslon, R. N. (2011). Ecological impacts of southern pine beetle. In R. N. Coulson, & K. D. Klepzig (Eds.), Southern pine beetle II (Gen. Tech. Rep. SRS-140, pp. 223–234). Asheville: U.S. Department of Agriculture, Forest Service, Southern Research Station.Google Scholar
  190. Thomson, A. J., & Benton, R. (2007). A 90-year sea warming trend explains outbreak patterns of western spruce budworm on Vancouver Island. The Forestry Chronicle, 83, 867–869.Google Scholar
  191. Thomson, A. J., Shepherd, R. F., Harris, J. W. E., & Silversides, R. H. (1984). Relating weather to outbreaks of western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae), in British Columbia. The Canadian Entomologist, 116, 375–381.CrossRefGoogle Scholar
  192. Tilman, D. (1997). Community invasibility, recruitment limitation, and grassland biodiversity. Ecology, 78, 81–92.CrossRefGoogle Scholar
  193. Tkacz, B., Brown, H., Daniels, A., et al. (2010). National roadmap for responding to climate change (FS-957b). Washington, DC: U.S. Department of Agriculture, Forest Service.Google Scholar
  194. Trân, J. K., Ylioja, T., Billings, R. F., et al. (2007). Impact of minimum winter temperatures on the population dynamics of Dendroctonus frontalis. Ecological Applications, 17, 882–899.CrossRefGoogle Scholar
  195. Trenberth, K. E., Fasullo, J. T., & Kiehl, J. (2009). Earth’s global energy budget. Bulletin of the American Meteorological Society, 90, 311–323.CrossRefGoogle Scholar
  196. Troendle, C. A., MacDonald, L. H., Luce, C. H., & Larsen, I. J. (2010). Fuel management and water yield. In W. J. Elliot, I. S Miller, & L. Audin (Eds.), Cumulative watershed effects of fuel management in the Western United States (Gen. Tech. Rep. RMRS-GTR-231, pp. 124–148). Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Chapter 7.Google Scholar
  197. U.S. Department of Agriculture, Forest Service (USDA FS). (2010). Major forest insect and disease conditions in the United States: 2009 update (FS-952, 28pp). Washington, DC: U.S. Forest Service.Google Scholar
  198. van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., et al. (2009). Widespread increase of tree mortality rates in the Western United States. Science, 323, 521–524.CrossRefGoogle Scholar
  199. Veblen, T. T., Hadley, K. S., Reid, M. S., & Rebertus, A. J. (1991). The response of subalpine forests to spruce beetle outbreak in Colorado. Ecology, 72, 213–231.CrossRefGoogle Scholar
  200. Wagner, D. L., Defoliart, L., Doak, P., & Schneiderheinze, J. (2008). Impact of epidermal leaf mining by the aspen leaf miner (Phyllocnistis populiella) on the growth, physiology, and leaf longevity of quaking aspen. Oecologia, 157, 259–267.CrossRefGoogle Scholar
  201. Wenger, S. J., Isaak, D. J., Luce, C. H., et al. (2011). Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proceedings of the National Academy of Sciences, USA, 108, 14175–14180.CrossRefGoogle Scholar
  202. Werner, R. A., Holsten, E. H., Matsouka, S. M., & Burnside, R. E. (2006). Spruce beetles and forest ecosystems in south-central Alaska: A review of 30 years of research. Forest Ecology and Management, 227, 195–206.CrossRefGoogle Scholar
  203. Westerling, A. L., Gershunov, A., Brown, T. J., et al. (2003). Climate and wildfire in the Western United States. Bulletin of the American Meteorological Society, 84, 595–604.CrossRefGoogle Scholar
  204. Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940–943.CrossRefGoogle Scholar
  205. Westerling, A. L., Turner, M. G., Smithwick, E. A. H., et al. (2011). Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proceedings of the National Academy of Sciences, USA, 108, 13165–13170.CrossRefGoogle Scholar
  206. Whitlock, C., Shafer, S. L., & Marlon, J. (2003). The role of climate and vegetation change in shaping past and future fire regimes in the northwestern US and the implications for ecosystem management. Forest Ecology and Management, 178, 5–21.CrossRefGoogle Scholar
  207. Williams, D. W., & Liebhold, A. M. (1995a). Forest defoliators and climatic change: Potential changes in spatial distribution of outbreaks of western spruce budworm (Lepidoptera: Tortricidae) and gypsy moth (Lepidoptera: Lymantriidae). Environmental Entomology, 24, 1–9.Google Scholar
  208. Williams, D. W., & Liebhold, A. M. (1995b). Herbivorous insects and global change: Potential changes in the spatial distribution of forest defoliator outbreaks. Journal of Biogeography, 22, 665–671.CrossRefGoogle Scholar
  209. Willis, C. G., Ruhfel, B. R., Promack, R. B., et al. (2010). Favorable climate change response explains non-native species’ success in Thoreau’s woods. PLoS One, 5, e8878.CrossRefGoogle Scholar
  210. Woods, A. J., Heppner, D., Kope, H. H., et al. (2010). Forest health and climate change: A British Columbia perspective. The Forestry Chronicle, 86, 412–422.Google Scholar
  211. Worrall, J. J., Egeland, L., & Eager, T. (2008). Rapid mortality of Populus tremuloides in southwestern Colorado, USA. Forest Ecology and Management, 255, 686–696.CrossRefGoogle Scholar
  212. Ylioja, T., Slone, D. H., & Ayres, M. P. (2005). Mismatch between herbivore behavior and demographics contributes to scale-dependence of host susceptibility in two pine species. Forest Science, 51, 522–531.Google Scholar
  213. Zavaleta, E. S., Hobbs, R. J., & Mooney, H. A. (2001). Viewing invasive species removal in a whole-ecosystem context. Trends in Ecology & Evolution, 16, 454–459.CrossRefGoogle Scholar
  214. Ziska, L. H., & Dukes, J. S. (2011). Weed biology and climate change (248pp). Ames: Wiley-Blackwell.Google Scholar
  215. Ziska, L. H., & George, K. (2004). Rising carbon dioxide and invasive, noxious plants: Potential threats and consequences. World Resource Review, 16, 427–447.Google Scholar
  216. Ziska, L. H., & Teasdale, J. R. (2000). Sustained growth and increased tolerance to glyphospsate observed in a C3 perennial weed quackgrass (Elytrigia repens), grown at elevated carbon dioxide. Australian Journal of Plant Physiology, 27, 159–166.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2014

Authors and Affiliations

  • Matthew P. Ayres
    • 1
    Email author
  • Jeffrey A. Hicke
    • 2
  • Becky K. Kerns
    • 3
  • Don McKenzie
    • 4
  • Jeremy S. Littell
    • 5
  • Lawrence E. Band
    • 6
  • Charles H. Luce
    • 7
  • Aaron S. Weed
    • 1
  • Crystal L. Raymond
    • 8
  1. 1.Department of Biological SciencesDartmouth CollegeHanoverUSA
  2. 2.Department of GeographyUniversity of IdahoMoscowUSA
  3. 3.Pacific Northwest Research StationU.S. Forest ServiceCorvallisUSA
  4. 4.Pacific Northwest Research StationU.S. Forest ServiceSeattleUSA
  5. 5.Alaska Climate Science CenterU.S. Geological SurveyAnchorageUSA
  6. 6.Department of GeographyUniversity of North CarolinaChapel HillUSA
  7. 7.Rocky Mountain Research StationU.S. Forest ServiceBoiseUSA
  8. 8.Seattle City LightSeattleUSA

Personalised recommendations